Deposition, Adhesion, and Release of Bioaerosols

  • H. Hollis Wickman


Bioaerosols typically consist of a range of particle sizes and shapes. Further, each particle, even if it is a single, “simple” bacterium, may have a complex surface morphology. The degree of hydration as well as the size of the particle or cluster often changes with time after the aerosol is generated. This can lead to significant changes in its mechanical, elastic, or surface properties. For such reasons, it is not possible to provide a detailed picture of all types of bioaerosol-surface interactions. To approximate the situation, it is necessary to introduce several simplifying assumptions, which are guided by knowledge of less complex aerosol systems.


Aerosol Particle Aerosol Deposition Brownian Diffusion Hamaker Constant Contact Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Symbols Used


Hamaker constant


random force

a, b

ellipse axes


Cunningham slip correction factor


particle surface distance


Einstein diffusion coefficient


particle diameter


gravitational energy


collector efficiency


thermal energy


Froude number


pull-off force


gravitational force


friction force


LvdW force


gravitational constant


characteristic distance


Boltzmann constant


London-van der Waals


particle mass


gravity number


Peclet number




equilibrium liquid vapor pressure


electric charge


electron charge


gas constant


Reynolds number


particle radius


mean radius of curvature


Stokes number






contact potential


free-stream velocity




particle velocity


critical capture velocity


deposition velocity


terminal velocity


stopping distance


mean square particle displacement


compressibility modulus


critical parameter for impaction on spherical collector


dynamical shape constant


surface tension, or surface energy


permittivity of free space


air viscosity


kinematic viscosity


particle mass density


Schmidt number


relaxation time


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aylor, D. E. 1975. Force required to detach conida of Helminthosporium maydis. Plant Physiol. 55: 99–101.PubMedGoogle Scholar
  2. Aylor, D. E. 1978. Dispersal in time and space: Aerial pathogens. In J. G. Horsfall and E. B. Cowling (eds.), Plant disease. An advanced treatise. Vol. 2. Academic Press, New York.Google Scholar
  3. Bagnold, R. A. 1941. The physics of blown sand and desert dunes. Methuen & Co. London.Google Scholar
  4. Batchelor, G. K. 1976. Brownian diffusion of particles with hydrodynamic interaction. J. Fluid. Mech. 74: 1–29.Google Scholar
  5. Binnig, G., and H. Rohrer. 1986. Scanning tunneling microscopy. IBM J. Res. Develop. 30: 355–369.Google Scholar
  6. Binnig, G., C. F. Quate, and Ch. Gherber. 1986. Atomic force microscopy. Phys. Rev. Lett. 56: 930–933.Google Scholar
  7. Boehme, G., H. Krupp, H. Rabenhorst, and G. Sandstede. 1962. Adhesion measurements involving small particles. Trans. Inst. Chem. Engrs. 40: 252–259.Google Scholar
  8. Bongrand, P. (ed.). 1988. Physical basis of cell—cell adhesion. CRC Press, Boca RatonGoogle Scholar
  9. Bowling, R. A. 1985. An analysis of particle adhesion on semiconductor surfaces. J. Electrochem. Soc. Solid-State Sci. Technol. 132: 2209–2214.Google Scholar
  10. Bradley, R. S. 1932. The cohesive force between solid surfaces and the surface energy of solids. Philos. Mag. 13: 853–862.Google Scholar
  11. Brenner, H., and M. E. O’Neil. 1972. Stokes resistance of multiparticle systems in a linear shear field. Chem. Eng. Sci. 27: 1421–1439.Google Scholar
  12. Brenner, S. S., H. A. Wriedt, and R. A. Oriani. 1981. Impact adhesion of iron at elevated temperatures. Wear 68: 169–190.Google Scholar
  13. Burris, R. H. 1989. Field testing genetically modified organisms. National Academy Press.Google Scholar
  14. Cevc, G., and D. Marsh. 1987. Phospholipid bilayers. John Wiley & Sons, New York.Google Scholar
  15. Chamberlain, A. C. 1967. Deposition of particles to natural surfaces. In P. H. Gregory and J. L. Monteith (eds.), Airborne microbes. Cambridge University Press, Cambridge, pp. 138–164.Google Scholar
  16. Chan, P., and B. Dahneke. 1981. Free-molecule drag on straight chains of uniform spheres. J. Appl. Phys. 52: 3106–3110.Google Scholar
  17. Chaudhury, M. K., and G. M. Whitesides. 1991. Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives. Langmuir 7: 1013–1025.Google Scholar
  18. Chen, Y. L., C. A. Helm, and J. N. Israelachvili. 1991. Molecular mechanisms associated with adhesion and contact angle hysteresis of monolayer surfaces. J. Phys. Chem. 95: 10736–10747.Google Scholar
  19. Cleaver, J. W., and B. Yates. 1975. A sublayer model for the deposition of particles from a turbulent flow. Chem. Eng. Sci. 30: 983–992.Google Scholar
  20. Clough, W. S. 1975. The deposition of particles on moss and grass surfaces. Atmos. Environ. 9: 1113–1119.Google Scholar
  21. Cooper, D. W., and H. L. Wolfe. 1990. Electrostatic removal of particle singlets and doublets from conductive surfaces. Aerosol Sci Tech. 12: 508–517.Google Scholar
  22. Corino, E. R., and R. S. Brodkey. 1969. A visual investigation of the wall region in turbulent flow. J. Fluid Mech. 37 (Part I): 1–30.Google Scholar
  23. Corn, M. 1961a. The adhesion of solid particles to solid surfaces. I. A review. J. Air Pollut. Control Assoc. 11: 523–528.Google Scholar
  24. Corn, M. 1961b. The adhesion of solid particles to solid surfaces. II. J. Air Pollut. Control Assoc. 11: 566–575.Google Scholar
  25. Corn, M. and F. Stein. 1965. Re-entertainment of particles from a plane surface. Amer. Ind. Hyg. Assoc. J. 26: 325–336.Google Scholar
  26. Dahneke, B. 1971. The capture of aerosol particles by surfaces. J. Colloid Interface Sci. 37: 342–353.Google Scholar
  27. Dahneke, B. 1973. Measurements of bouncing of small latex particles. J. Colloid Interface Sci. 45: 584–590.Google Scholar
  28. Davies, C. N. 1966. Deposition of aerosols from turbulent flow through pipes. Proc. Roy. Soc. ( London) A 289: 235–246.Google Scholar
  29. Davis, M. H. 1969. Electrostatic field and force on a dielectric sphere near a conducting plane-A note on the application of electrostatic theory to water droplets. Amer. J. Phys. 37: 26–29.Google Scholar
  30. Derjaguin, B. V., I. I. Abrikosov, and E. M. Lifshitz. 1956. Direct measurement of molecular attraction between solids separated by a narrow gap. Quart. Rev. Chem. Soc. 10: 295–329.Google Scholar
  31. Derjaguin, B. V., V. M. Muller, and Yu. P. Toporov. 1975. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53: 314–326.Google Scholar
  32. Deryaguin, B. V., and A. D. Zimon. 1961. Adhesion of powder particles to plane surfaces. ( Consultants Bureau translation ). Kolloid Zh. 23: 544–552.Google Scholar
  33. Ducker, W. A., T. J. Senden, and R. M. Pashley. 1991. Direct measurement of colloidal forces using an atomic force microscope. Nature 353: 239–241.Google Scholar
  34. Dzyaloshinskii, I. E., E. M. Lifshitz, and L. P. Pitaevskii. 1961. The general theory of Van der Waals forces. Adv. Phys. 10: 165–209.Google Scholar
  35. Fernandez de la Mora, J., and D. E. Rosner. 1982. Effects of inertia on the diffusional deposition of small particles to spheres and cylinders at low Reynolds numbers. J. Fluid Mech. 125: 379–395.Google Scholar
  36. Fisher, L. R., and J. N. Israelachvili, 1980. Determination of the capillary pressure in menisci of molecular dimensions. Chem. Phys. Lett. 76: 325–328.Google Scholar
  37. Fisher, L. R., and J. N. Israelachvili. (1981b). Direct measurement of the effect of meniscus forces on adhesion: A study of the applicability of the macroscopic thermodynamics to microscopic liquid interfaces. Colloids Surfaces 3: 303–319.Google Scholar
  38. Friedlander, S. K. 1957. Mass and heat transfer to single spheres and cylinders at low Reynolds numbers. Amer. Inst. Chem. Engrs. 3: 43–48.Google Scholar
  39. Friedlander, S. K., and H. F. Johnstone. 1957. Deposition of suspended particles from turbulent gas streams. hid. Eng. Chem. 49: 1151–1156.Google Scholar
  40. Fuchs, N. A. 1964. The mechanics of aerosols. Dover Publications, New York.Google Scholar
  41. Garland, J. A., and L. C. Cox. 1982. Deposition of small particles to grass. Atmos. Environ. 16: 2699–2702.Google Scholar
  42. Giddings, L. V. (ed.). 1988. New developments in biotechnology-field-testing engineered organisms: Genetic and ecological issues. Vol. 3. ( New developments in biotechnology). U.S. Government Printing Office, Washington, DC.Google Scholar
  43. Gillespie, T., and W. J. Settineri. 1967. The effect of capillary liquid on the force of adhesion between spherical solid particles. J. Colloid Interface Sci. 24: 199–202.Google Scholar
  44. Gupta, D., and M. H. Peters. 1985. A Brownian dynamics simulation of aerosol deposition onto spherical collectors. J. Colloid Interface Sci. 104:375–389; erratum 110: 301–303.Google Scholar
  45. Gupta, D., and M. H. Peters. 1986. On the angular dependence of aerosol diffusional deposition onto spheres. J. Colloid Interface Sci. 110: 286–291.Google Scholar
  46. Gutfinger, C., and G. I. Tardos. 1979. Theoretical and experimental investigations on granular bed dust filters. Atmos. Environ. 13: 853–867.Google Scholar
  47. Hamaker, H. C. 1937. The London-Van der Waals attraction between spherical particles. Physica 4: 1058–1072.Google Scholar
  48. Happel, J., and H. Brenner. 1986. Low Reynolds number hydrodynamics• with special applications to particulate media, 2nd ed. (paperback). Kluluner, Boston.Google Scholar
  49. Hartmann, G. C., L. M. Marks, and C. C. Yang. 1976. Physical models for photoactive pigment electrophotography. J. Appl. Phys. 47: 5409–5420.Google Scholar
  50. Hays, D. A. 1988. Electric field detachment of charged particles. In K. N. Mittal, ed., Particles on Surfaces, Vol. 1. pp. 351–360. Plenum, New York.Google Scholar
  51. Hertz, H. 1881. J. Reine Agew. Math. 92:156; English translation reprinted in collection: Miscellaneous Papers. MacMillan, London (1896), p. 146–181.Google Scholar
  52. Hidy, G. M., and J. R. Brock. 1970. The dynamics of aerocolloidal systems. Pergamon Press, Oxford.Google Scholar
  53. Hiemenz, P. C. 1986. Principles of colloid and surface chemistry. 2nd ed. Marcel Dekker, New York.Google Scholar
  54. Hinds, W. C. 1982. Aerosol technology. John Wiley & Sons, New York.Google Scholar
  55. Horn, R. G., J. N. Israelachvili, and F. Pribac. 1987. Measurement of the deformation and adhesion of solids in contact. J. Colloid Interface Sci. 115: 480–492.Google Scholar
  56. Hough, D. B., and L. R. White. 1980. The calculation of Hamaker constants from Lifshitz theory with applications to wetting phenomena. Adv. Colloid Interface Sci. 14: 3–41.Google Scholar
  57. Hughes, B. D., and L. R. White. 1979. “Soft” contact problems in linear elasticity. Quart J. Mech. Appl. Math. 33: 445–471.Google Scholar
  58. Hughes, B. D., and L. R. White. 1980. Implications of elastic deformation on the direct measurement of surface forces. J. Chem. Soc. Faraday Trans. I 76: 963–978.Google Scholar
  59. Ingold, C. T. 1960. Dispersal by air and water: the take-off. J. G. Horsfall and A. E. Diamond (eds.), In Plant pathology. Vol. III: The diseased population, epidemics and control. Academic Press, New York, pp. 137–168.Google Scholar
  60. Israelachvili, J. N. 1972. Calculation of van der Waals dispersion forces between macroscopic bodies. Proc. Roy. Soc. ( Lond. ) A331: 39–55.Google Scholar
  61. Israelachvili, J. N. 1985. Intermolecular and surface forces. Academic Press, London.Google Scholar
  62. Israelachvili, J. 1987. Solvation forces and liquid structure as probed by direct force measurements. Accounts. Chem. Res. 20: 415–421.Google Scholar
  63. Israelachvili, J. N., and G. E. Adams. 1978. Measurement of forces between two micasurfaces in aqueous electrolyte solutions in the range 0–100 nm. J. Chem. Soc. Trans. Faraday Soc. I 74: 975–1001.Google Scholar
  64. Israelachvili, J. N., and D. Tabor. 1973. Van der Waals forces: Theory and experiment. Prog. Surf. Memb. Sci. 7: 1–55.Google Scholar
  65. Johnson, K. L. 1985. Contact mechanics. Cambridge University Press, Cambridge.Google Scholar
  66. Johnson, K. L., K. Kendall, and A. D. Roberts. 1971. Surface energy and the contact of elastic solids. Proc. Roy. Soc. ( Lond. ) A324: 301–313.Google Scholar
  67. Kline, S. J., W. C. Reynolds, F. A. Schraub, and P. W. Runstadler. 1967. The structure of turbulent boundary layers. J. Fluid Mech. 30 (Part 4): 741–773.Google Scholar
  68. Kordecki, M. C., and C. Orr. 1960. Adhesion of solid particles to solid surfaces. Arch. Environ. Health 1: 1–9.Google Scholar
  69. Krupp, H. 1967. Particle adhesion. Adv. Colloid Interface Sci. 1: 111–239.Google Scholar
  70. Kraemer, H. F., and H. F. Johnston. 1955. Collection of aerosol particle in presence of electrostatic fields. Ind. Eng. Chem. 47: 2426–2434.Google Scholar
  71. Landman, U., W. D. Luedtke, N. A. Burnham, and R. J. Coulton. 1990. Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248: 454–461.PubMedGoogle Scholar
  72. Leckband, D. E., Y.-L. Chen, J. N. Israelachvili, H. H. Wickman, and M. Fletcher. 1992. Measurements of conformational changes during adhesion of lipid and protein (polylysine and S-layer) surfaces. Biotech. and Bioeng. 42: 167–177.Google Scholar
  73. Levich, V. G. 1962. Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  74. Little, P. 1977. Deposition of 2.75, 5.0 and 8.5 µm particles to plant and soil surfaces. Environ. Pollut. 12: 293–305.Google Scholar
  75. Loeb, L. B. 1958. Static electrification, Springer-Verlag, Berlin.Google Scholar
  76. London, F. 1937. The general theory of molecular forces. Trans. Faraday Soc. 33:8–26. Mahanty, J., and B. W. Ninham. 1976. Dispersion Forces. Academic Press, New York.Google Scholar
  77. Marshall, K. C. 1986. Adsorption and adhesion processes in microbial growth at interfaces. Adv. Colloid Interface Sci. 25: 59–86.Google Scholar
  78. Marra, J. 1986. Direct measurements of attractive van der Waals and adhesive forces between uncharged lipid balances in aqueous solutions. J. Colloid Interpace Sci. 109: 11–20.Google Scholar
  79. May, K. R., and R. Clifford. 1967. The impaction of aerosol particles on cylinders, spheres, ribbons and discs. Ann. Occup. Hygiene 10: 83–95.Google Scholar
  80. McFarlane, J. S., and D. Tabor. 1950. Adhesion of solids and the effect of surface films. Proc. Roy. Soc. ( Lond. ) 202: 224–243.Google Scholar
  81. McLachlan, A. D. 1963a. Retarded dispersion forces between molecules. Proc. Roy. Soc. ( Lond. ) A271: 387–401.Google Scholar
  82. McLachlan, A. D. 1963b. Retarded dispersion forces in dielectrics at finite temperatures. Proc. Roy. Soc. ( Lond. ) A274: 80–90.Google Scholar
  83. McLachlan, A. D. 1963c. Three-body dispersion forces. Mol. Phys. 6: 423–427.Google Scholar
  84. Mittal, K. L. (ed.). 1988, 1991. Particles on surfaces. Plenum Press, New York, Vols. 1 (1988), 2 (1989), Vol. 3 (1991).Google Scholar
  85. Muller, V. M., V. S. Yuschenko, and B. V. Derjaguin. 1980. On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J. Colloid Interface Sci. 77: 91–101.Google Scholar
  86. Muller, V. M., V. S. Yushchenko, and B. V. Derjaguin. 1983. General theoretical considerations of the influence of surface forces on contact deformations and the reciprocal adhesion of elastic spherical particles. J. Colloid Interface Sci. 92: 92–101.Google Scholar
  87. Nazaroff, W. W., and G. R. Cass. 1989. Mathematical modeling of indoor aerosol dynamics. Environ. Sci. Technol. 23: 157–166.Google Scholar
  88. Nicholson, K. W. 1988a. A review of particle resuspension. Atmos. Environ. 22: 26392651.Google Scholar
  89. Nicholson, K. W. 1988b. The dry deposition of small particles: A review of experimental measurements. Atmos. Environ. 22: 2653–2666.Google Scholar
  90. Nielsen, K. A., and Hill, J. C. 1976. Collection of inertialess particles on spheres with electrical forces. Ind. Eng. Fund. 15: 149–157.Google Scholar
  91. Ounis, H., G. Ahmadi and J. B. McLaughlin. 1991. Brownian diffusion of submicrometer particles in the viscous sublayer. J. Colloid Interface Sci. 143: 266–277.Google Scholar
  92. Parsegian, V. A., and G. H. Weiss. 1981. Spectroscopic parameters of computation of van der Waals forces. J. Colloid Interface Sci. 81: 285–289.Google Scholar
  93. Paw, U, K. T. 1983. The rebound of particles from natural surfaces. J. Colloid Interface Sci. 93: 442–452.Google Scholar
  94. Pum, D., M. Sara, and U. B. Sleytr. 1989. Structure, surface charge, and self-assembly of the S-layer lattice from Bacillus coagulens E38–66. J. Bacteriol. 171: 5296–5303.PubMedGoogle Scholar
  95. Ranade, M. B. 1987. Adhesion and removal of fine particles on surfaces. Aerosol. Sci. Technol. 7: 161–176.Google Scholar
  96. Reist, P. C. 1984. Introduction to aerosol science. Macmillan Publishing Co., New York.Google Scholar
  97. Robinson, K. S., and W. Y. Fowlkes. 1989. Multipolar interactions of dielectric spheres. J. Electrostatics 6: 207–224.Google Scholar
  98. Rogers, L. N., and J. Reed. 1984. The adhesion of particles undergoing an elastic-plastic impact with a surface. J. Phys. D. ( Appl. Phys. ) 17: 677–689.Google Scholar
  99. Ruelle, D. 1990. Chance and chaos. Princeton University Press, Princeton, NJ. Sarid, D. 1991. Scanning force microscopy. Oxford University Press, New York. Schlicting, H. 1960. Boundary layer thèory. 4th ed. McGraw-Hill, New York.Google Scholar
  100. Schröder, H. 1960. Dispersal by air and water-the flight and landing. In J. G. Horsfall and A. E. Dimond (eds.), Plant pathology. Vol. III. Academic Press, New York, pp. 169–227.Google Scholar
  101. Sehmel, G. A. 1980. Particle resuspension: A review. Environment Internat. 4: 107–127.Google Scholar
  102. Shapiro, M., H. Brenner, and D. C. Guell. 1990. Accumulation and transport of Brownian particles at solid surfaces: Aerosol and hydrosol deposition processes. J. Colloid Interface Sci. 136: 552–573.Google Scholar
  103. Shimada, M., K. Okuyama, Y. Kousaka, Y. Okuyama, and J. H. Seinfeld. 1989. Enhancement of Brownian and turbulent deposition of charged aerosol particles in the presence of an electric field. J. Colloid Interface Sci. 128: 157–168.Google Scholar
  104. Sleytr, U. B., and A. M. Glauert. 1982. Bacterial cell walls and membranes. In J. R. Harris (ed.), Electron microscopy of proteins. Vol. 3. Academic Press, London, pp. 41–78.Google Scholar
  105. Sleytr, U. B., P. Messner, D. Pum, and M. Sara. (eds.). 1988. Crystalline bacterial cell surface layers. Springer-Verlag. Berlin.Google Scholar
  106. Sleytr, U. B., and P. Messner. 1988. Minireview: Crystalline surface layers in procaryotes. J. Bacteriol. 170: 2891–2897.Google Scholar
  107. Sleytr, U. B., M. Sara, and D. Pum. 1991. Application potentials of two-dimensional protein crystals. Phillips Electron Optics Bull. 126: 9–14.Google Scholar
  108. Sleytr, U. B., M. Sara, Z. Kupcu and P. Messner. 1986. Structural and chemical characterization of S-layers of selected strains of Bacillus stearothermophilus and Desulfotomaculum nigrificans. Archiv. Microbiol. 146: 19–24.Google Scholar
  109. Smith II, W. J., F. W. Whicker, and H. R. Meyer. 1982. Review and categorization of saltation, suspension, and resuspension models. Nuclear Safety 23: 685–699.Google Scholar
  110. Spumy, K., and J. Pich. 1965. Diffusion and impaction precipitation of aerosol particles by membrane filters. Collect. Czech. Chem. Comm. 30: 2276–2287.Google Scholar
  111. Tardos, G. I., N. Abuaf, and C. Gutfinger. 1978. Dust deposition in granular bed filters: Theories and experiments. J. Air Pollut. Control Assoc. 28: 354–363.Google Scholar
  112. Tsai, C-J., D. Y. H. Pui, and B. Y. H. Liu. 1991. Elastic flattening and particle adhesion. Aerosol Sci. Tech. 15: 239–255.Google Scholar
  113. Tsai, C-J., D. Y. H. Pui, and B. Y. H. Liu. 1990. Capture and rebound of small latex particles upon impact with solid surfaces. Aerosol Sci. Tech. 12: 497–507.Google Scholar
  114. Visser, J. 1972. On Hamaker constants: A comparison between Hamaker constants and Lifshitz-Van Der Waals constants. Adv. Colloid Interface Sci. 3: 331–363.Google Scholar
  115. Wall, S., W. John, and S. L. Goren. 1988. Impact adhesion theory applied to measurements of particle kinetic energy loss. J. Aerosol Sci. 19: 789–792.Google Scholar
  116. Wells, A. C., and A. C. Chamberlain. 1967. Transport of small particles to vertical surfaces. Brit. J. Appl. Phys. 18: 1793–1799.Google Scholar
  117. White, H. J. 1963. Industrial electrostatic precipitation. Addison-Wesley, Reading, MA.Google Scholar
  118. Yeh, H. C., and B. Y. H. Liu. 1974. Aerosol filtration by fibrous filters. J. Aerosol Sci. 5: 191–217.Google Scholar
  119. Ying, R., and M. H. Peters. 1991. Interparticle and particle—surface gas dynamic interactions. Aerosol Sci. Technol. 14: 418–433.Google Scholar
  120. Zimon, A. D. 1982. Adhesion of dust and powder. 2nd ed. Consultants Bureau, New York.Google Scholar

Copyright information

© Chapman & Hall, Inc. 1994

Authors and Affiliations

  • H. Hollis Wickman

There are no affiliations available

Personalised recommendations