Health Aspects of Bioaerosols

  • Harry Salem
  • Donald E. Gardner


Bioaerosols have been defined as colloidal suspensions in air of liquid droplets or solid particles, containing, or having attached to them, one or more living organisms. These organisms include viruses, bacteria, fungi, protozoa, or algae. Bioaerosols may range in size from a single microorganism to large droplets containing many microorganisms. Microorganisms may also be attached to pollen grains, plant debris, skin flakes, and/or soil particles. Liquid droplets may change in size upon evaporation or condensation, which may or may not result in the loss of viability of the organism.


Health Aspect Scarlet Fever Biological Weapon Infectious Organism Respiratory Bronchiole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Dagal, M., and D. Y. Fung. 1990. Aeromicrobiology—A review. Crit. Rev. Food Sci. Nutr. 29:333–340.PubMedCrossRefGoogle Scholar
  2. Aldovini, A., and R. A. Young. 1992. The new vaccines. Technol. Rev. 95:24–31.Google Scholar
  3. Bates, D. V., D. L. Dungworth, P. N. Lee, R. O. McClellan, and F. J. C. Roe. 1989. Assessment of inhalation hazards. Springer-Verlag, New York.Google Scholar
  4. Baum, R. M. 1987a. Biotech industry moving pharmaceutical products to market. Chemical and Engineering News 65(29):11–32.CrossRefGoogle Scholar
  5. Baum, R. M. 1987b. Agricultural biotechnology advances toward commercialization. Chemical and Engineering News 65(32):9–14.CrossRefGoogle Scholar
  6. Brachman, P. S. 1980. Inhalation anthrax. pp. 83–93. In R. B. Kundsin, (ed.), Airborne contagion Annals of New York Academy of Sciences, New York. 353.Google Scholar
  7. Breiman, R. F., W. Cozen, B. S. Fields, T. D. Mastro, S. J. Carr, J. S. Spika, and L. Mascola. 1990. Role of air sampling in investigation of an outbreak of Legionnaires’ disease associated with exposure to aerosols from an evaporative condenser. J. Infect. Dis. 161:1257–1261.PubMedCrossRefGoogle Scholar
  8. Burge, H. A. 1987. Toxigenic potential of indoor microbial aerosols. In S. S. Sandhu, D. M. Demarini, M. J. Mass, M. M. Moore, and J. L. Mumford, (eds.), Short-term bioassays in the analysis of complex environmental mixtures. Plenum, New York.Google Scholar
  9. Burge, H. 1990. Bioaerosols: Prevalence and health effects in the indoor environment. J. Allergy Clin. Immunol. 86:687–701.PubMedCrossRefGoogle Scholar
  10. Coffin, D. L., and D. E. Gardner. 1972. Interaction of biological agents and chemical air pollutants. Ann. Occup. Hyg. 15:219–235.PubMedCrossRefGoogle Scholar
  11. Conant, N. F. 1976. Fungous diseases involving internal organs, Pp. 1056–1057. In W. K. Joklik and H. P. Willett (eds.), Zinsser microbiology. Appleton-Century-Crofts, New York.Google Scholar
  12. Crystal, R. G., J. B. West, P. J. Barnes, N. S. Cherniack, and E. R. Weibel (eds.). 1991. The lung: Scientific foundations. Raven Press, New York.Google Scholar
  13. Donham, K. J. 1991. Association of environmental air contaminants with disease and productivity in swine. Amer. J. Vet. Res. 52:1723–1730.PubMedGoogle Scholar
  14. Druett, H. A., D. W. Henderson, L. Packman, and S. Peacock. 1953. Studies on respiratory infection. 1. The influence of particle size on respiratory infection with anthrax spores. J. Hyg. 51:359.CrossRefGoogle Scholar
  15. Duguid, J. P. 1945. The number and sites of origin of droplets expelled during expiratory activities. Edinb. Med. J. 52:385–401.PubMedGoogle Scholar
  16. Edwards, J. H., A. J. Griffiths, and J. Mullins. 1976. Protozoa as sources of antigens in humidifier fever. Nature 264:438.PubMedCrossRefGoogle Scholar
  17. Fenstersheib, M. D., M. Miller, C. Diggins, S. Liska, L. Detwiler, S. B. Werner, D. Lindquist, W. L. Thacker, and R. F. Benson. 1990. Outbreak of Pontiac fever due to Legionella Anisa. Lancet 336:35–37.PubMedCrossRefGoogle Scholar
  18. Fraser, D. W. 1980. Legionellosis: Evidence of airborne transmission. Pp. 61–66. In R.B. Kundsin, (ed.), Airborne contagion. Annals of New York Academy of Sciences, New York. 353.Google Scholar
  19. Gallis, H. A. 1976. Microbial ecology and normal flora of the human body. pp. 404–412. In W. K. Joklik and H. P. Willett (eds.), Zinsser microbiology. Appleton-CenturyCrofts, New York.Google Scholar
  20. Gardner, D. E., J. D. Crapo and E. J. Massaro. (eds.) 1988. Toxicology of the lung. Target Organ Toxicology series. Raven Press, New York.Google Scholar
  21. Gardner, D. E. 1988. The use of experimental infections to monitor improvements in pulmonary defense. J. Appl. Toxicol. 6:385–388.Google Scholar
  22. Goodlow, R. J., and F.A. Leonard. 1961. Viability and infectivity of microorganisms in experimental airborne infection. Bacteriol. Rev. 25:182.PubMedGoogle Scholar
  23. Gershon, D. 1992. Genetically engineered foods get green light. Nature 357:352.PubMedGoogle Scholar
  24. Glanz, J. 1992. Herman: The pharmaceutical industry’s next star? R&D Mag. 34:36–42.Google Scholar
  25. Graham, J. A., D. E. Gardner, E. J. Blommer, D. E. House, M. G. Menache, and F. J. Miller. 1987. Influence of exposure patterns of nitrogen dioxide and modifications by ozone on susceptibility to bacterial disease in mice. J. Toxicol. Environ. Health 21:113–125.PubMedCrossRefGoogle Scholar
  26. Gwaltney, J. M., Jr. 1980. Epidemiology of the common cold. Pp. 54–60. In R. B. Kundsin, (ed.), Airborne contagion. Annals of New York Academy of Sciences, New York.Google Scholar
  27. Hatch, G. E., R. Slade, E. Boykin, F. G. Miller, and D. E. Gardner. 1981. Correlation of effects of inhaled versus intratracheally injected metals on susceptibility to infection. Amer. Rev. Respir. Dis. 124:167–173.Google Scholar
  28. Hatch, T. F. 1961. Distribution and deposition of inhaled particles in respiratory tract. Bacteriol. Rev. 25:237–240.Google Scholar
  29. Hatch, T. F., and P. Gross. 1964. Pulmonary deposition and retention of inhaled aerosols. Academic Press, New York. Pp. 137–145.Google Scholar
  30. Herman, L. G. 1980. Aspergillus in patient care areas. Pp. 140–146. In R. B. Kundsin, (ed.), Airborne contagion. Annals of New York Academy of Sciences, New York.Google Scholar
  31. Jennison, M.W. 1942. Atomizing of mouth and nose Secretions into the air as revealed by high-speed photography. Pp. 106–128. In F. R. Moulton, (ed.), Aerobiology. American Association for the Advancement of the Sciences, Washington, D.C.Google Scholar
  32. Joklik, W. K. 1976. Poxviruses. Pp. 937–944. In W. K. Joklik and H. P. Willett (ed.), Zinsser microbiology. Appleton-Century-Crofts, New York.Google Scholar
  33. Kaminski, E., S. Stawicki, and E. Wasowicz. 1974. Volatile flavor compounds produced by molds of aspergillus, penicillium, and fungi Imperfecti. Appl. Microbiol. 27:1001.PubMedGoogle Scholar
  34. Kaufmann, A. F., M. D. Fox, J.M. Boyce, D. C. Anderson, M. E. Potter, W. J. Martone, and C. M. Patton. 1980. Airborne spread of brucellosis. pp. 105–114. In R. B. Kundsin, (ed.), Airborne contagion. Annals of New York Academy of Science, New York.Google Scholar
  35. Ketchum, P. M. 1988. Microbiology: Concepts and applications. John Wiley & Sons, New York.Google Scholar
  36. Kundsin, R. B. 1980. Opening remarks. pp. 1–2. In R. B. Kundsin, (ed.), Airborne contagion. Annals of New York Academy of Sciences, New York.Google Scholar
  37. Lange, D. J. 1976. Herpesviruses. pp. 947–949. In W. K. Joklik and H. P. Willett (eds.), Zinsser microbiology. Appleton-Century-Crofts, New York.Google Scholar
  38. Lee, J. V., and A. A. West. 1991. Survival and growth of Legionella species in the environment. J. Appl. Bacteriol. (Symp. Suppl.) 70:121S–129S.Google Scholar
  39. Mallison, G. F. 1980. Legionellosis: Environmental aspects. Pp. 67–70. In R. B. Kundsin, (ed.), Airborne contagion. Annals of New York Academy of Science, New York.Google Scholar
  40. Mannis, M. J., R. Tamaru, A. M. Roth, M. Burns, and C. Thirkill. 1986. Acanthamoeba Sclerokeratitis. Arch. Ophthalmol. 104:1313.Google Scholar
  41. McClellan, R. O. and F. F. Henderson. (eds.). 1989. Concepts in inhalation toxicology. Hemisphere Publishing Co., New York.Google Scholar
  42. Miller, F. J., and D. B. Menzel. (eds.). 1989. Extrapolation modeling of inhaled toxicants. Hemisphere Publishing Co., New York.Google Scholar
  43. National Research Council. 1991. Human exposure assessment for airborne pollutants: Advances and opportunities. National Academy Press, Washington, D.C.Google Scholar
  44. O’Mahony, M. C., R. E. Stanwell-Smith, H. E. Tillett, D. Harper, G. P. Hutchison, I. D. Farrell, D. N. Hutchinson, J. V. Lee, P. J. Dennis, H. V. Duggal, J. A. Scully, and C. Denne. 1990. The Stafford outbreak of Legionnaires’ disease. Epidemiol. Infect. 104:361–380.PubMedCrossRefGoogle Scholar
  45. Parker, R. F., J. K. Davis, and G. H. Cassell. 1989. Short term exposure to nitrogen dioxide enhances susceptibility to respiratory mycoplasmosis and decreases in intrapulmonary killing of mycoplasma pulmonia. Amer. Rev. Resp. Dis. 140:502–512.PubMedCrossRefGoogle Scholar
  46. Phalen, R. F. 1984. Inhalation studies: Foundation and techniques. CRC Press, Boca Raton, FL.Google Scholar
  47. Poupard, J. A., L. A. Miller, and L. Granshaw. 1989. The use of smallpox as a biological weapon in the French and Indian War of 1763. ASM News 55:122–124.Google Scholar
  48. Powledge, T. M. 1992. Gene pharming. Technol. Rev. 95:61–66.Google Scholar
  49. Salem, H., and D. M. Aviado. 1970. Physiology of the cough reflex. Pp. 233–270. In International encyclopedia of pharmacology and therapeutics. Section 27, Vol.1. Antitussiveagents. H. Salem and D.M. Aviado (eds.).Google Scholar
  50. Salem, H. 1987. Principles of inhalation toxicology. pp. 1–33. In H. Salem (ed.), Inhalation toxicology. Marcel Dekker, Inc. New York.Google Scholar
  51. Salem, H., G. L. Kennedy, J. B. Morris, M. V. Roloff, C. E. Ulrich, R. Valentine, and R.K. Wolff. 1992. Recommendations for the conduct of acute inhalation limit tests. Fund. Appl. Toxicol. 18:321–327.CrossRefGoogle Scholar
  52. Spendlove, J. C., and K. F. Fannin 1983. Source, significance, and control of indoor microbial aerosols: Human health aspects. Public Health Rep. 98:229.PubMedGoogle Scholar
  53. Sprengler, J. D., and K. Sexton. Indoor air pollution: A public health perspective. Science 221:9–17.Google Scholar
  54. Titball, R. W., P. C. B. Turnbull, and R. A. Hutson. 1991. The monitoring and detection of Bacillus-anthracis in the environment. J. Appl. Bacteriol. (Symp. Suppl). 70:9S–18S.Google Scholar
  55. Wells, W. F. 1934. On air-borne infection: II. Droplets and droplet nuclei. Amer. Hyg. 20:611.Google Scholar
  56. Wells, W. F. 1955. Air-borne contagion and air hygiene. Harvard University Press, Cambridge, MA.Google Scholar
  57. Wells, W. F., H. L. Ratcliffe, and C. Crumb. 1948. On the mechanism of droplet-nucleus infection. II. Quantitative experimental air-borne turberculosis in rabbits. Amer. J. Hyg. 47:11.PubMedGoogle Scholar
  58. Yamamoto, K. R. 1989. Retargeting research on biological weapons. Technol. Rev. 92:23–24.Google Scholar

Copyright information

© Chapman & Hall, Inc. 1994

Authors and Affiliations

  • Harry Salem
  • Donald E. Gardner

There are no affiliations available

Personalised recommendations