Advertisement

Adhesion of Bacteria to Oral Tissues

  • Itzhak Ofek
  • Ronald J. Doyle

Abstract

The oral environment contains many kinds of bacteria, including both Gram-negative and Gram-positive cocci, bacilli, and spirochetes. More than 300 distinct species of bacteria may exist in the oral cavity. Some of these can be readily cultured and identified, whereas others can be cultured only with difficulty. Some may not be cultured at all. In ecological terms, the oral environment is a perfect niche for some bacteria. Frequently, the bacteria encountered in the oral environment are not found elsewhere in the body. In the mouth, bacteria are challenged by the turbulent effects of saliva; antibacterial proteins in saliva, such as lysozyme and lactoferrin; immunoglobulins; products from other microorganisms; and dietary constituents. Some of these factors influence adherent reactions, details of which will be discussed below.

Keywords

Bacterial Adhesion Dental Plaque Mutans Streptococcus Oral Bacterium Oral Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, A., and M.L. Hayes. 1984. The conditioning role of saliva in streptotoccal attachment to hydroxyapatite surfaces. J. Gen. Microbiol. 130: 809–816.PubMedGoogle Scholar
  2. Aduse-Opoku, J., M.L. Gilpin, and R.R.B. Russell. 1989. Genetic and antigenic comparison of Streptococcus mutansfructosyltransferase and glucan-binding protein. FEMS Microbiol. Lett. 59: 279–282.Google Scholar
  3. Babu, J.P. and M.K. Dabbous. 1986. Interaction of salivary fibronectin with oral streptococci J. Dent. Res. 65: 1094–1098.PubMedGoogle Scholar
  4. Babu, J.P., W.A. Simpson, H.S. Courtney, and E.H. Beachey. 1983. Interaction of human plasma fibronectin with cariogenic and noncariogenic oral streptococci. Infect. Immun. 41: 162–168.PubMedGoogle Scholar
  5. Babu, J.P., E.H. Beachey, and W.A. Simpson. 1986. Inhibition of the interaction of Streptococcus sanguis with hexadecane droplets by 55-and 66-kilodalton hydrophobic proteins of human saliva. Infect. Immun. 53: 278–284.PubMedGoogle Scholar
  6. Babu, J.P., M.K. Dubbous, and S.N. Abraham. 1991. Isolation and characterization of a 180-kilodalton salivary glycoprotein which mediates the attachment of Actinomyces naeslundii to human buccal epithelial cells. J. Periodont. Res. 26: 97–106.PubMedGoogle Scholar
  7. Banas, J., R.R.B. Russell, and J.J. Ferretti. 1990. Sequence analysis of the gene for the glucan-binding protein of Streptococcus mutans Ingbritt. Infect. Immun. 58: 667–673.PubMedGoogle Scholar
  8. Beighton, D. 1982. The influence of manganese on carbohydrate metabolism and caries induction by Streptococcus mutans strain Ingbritt. Caries Res. 16: 189–192.PubMedGoogle Scholar
  9. Beighton, D. 1983. Manganese, trace elements and dental disease. In: Curzon, M.E.J., T.W. Curtress, and A.F. Gardner (eds.), Postgraduate Dental Handbook Series, vol. 9. John Wright PSG, Inc. Littleton, MA, pp. 237–244.Google Scholar
  10. Beighton, D. 1984. The influence of saliva on the hydrophobic surface properties of bacteria isolated from oral sites of macaque monkeys. FEMS Microbiol. Lett. 21: 239–242.Google Scholar
  11. Bourgeau, G. and D. Mayrand. 1990. Aggregation of Actinomyces strains by extracellular vesicles produced by Bacteroides gingivalis. Can J. Microbiol. 36: 362–365.Google Scholar
  12. Bourgeau, G. and B.C. McBride. 1976. Dextran-mediated interbacterial aggregation between dextran-synthesizing streptococci and Actinomyces viscosus. Infect. Immun. 13: 12–28.Google Scholar
  13. Busscher, H.J. and A.H. Weerkamp. 1987. Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiol. Rev. 46: 165–173.Google Scholar
  14. Busscher, H.J., H.M. Uyen, A.W.J. van Pelt, A.H. Weerkamp, and J. Arends. 1986. Kinetics of adhesion of the oral bacterium Streptococcus sanguisCH3 to polymers with different surface free energies. Appl. Environ. Microbiol. 51: 910–914.PubMedGoogle Scholar
  15. Busscher, H.J., J. Sjollema, and H.C. van der Mei. 1990. Relative importance of surface free energy as a measure of hydrophobicity in bacterial adhesion to solid surfaces. In: Doyle, R.J. and M. Rosenberg (eds.), Microbial Cell Surface Hydrophobicity. American Society for Microbiology, Washington, pp. 335–359.Google Scholar
  16. Cassels, F.J., H.M. Fales, J. London, R.W. Carlson, and H. van Halbeek. 1990. Structure of a streptococcal adhesin carbohydrate receptor. J. Biol. Chem. 265: 14127–14135.PubMedGoogle Scholar
  17. Ciardi, J.E., G. Rolla, W.H. Bowen, and J.A. Reilly. 1977. Adsorption of Streptococcus mutans lipoteichoic acid to hydroxyapatite. Scand. J. Dent. Res. 85: 387–391.Google Scholar
  18. Cisar, J.O. 1986. Fimbrial lectins of the oral Actinomyces. In: Mirelman, D. (ed.), Microbial Lectins and Agglutinins; Properties and Biological Activity. John Wiley & Sons, New York, pp. 183–196.Google Scholar
  19. Cisar, J.O., P.E. Kolenbrander, and F.C. McIntire. 1979. Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus and Actinomyces naeslundii. Infect. Immun. 24: 742–752.PubMedGoogle Scholar
  20. Cisar, J.O., E.L. Barsumian, S.H. Curl, A.E. Vatter, A.L. Sandberg, and R.P. Siraganian. 1981. Detection and localization of a lectin of Actinomyces viscosusT14V by monoclonal antibodies. J. Immunol. 127: 1318–1324.PubMedGoogle Scholar
  21. Cisar, J.O., M.J. Brennan, and A.L. Sandberg. 1985. Lectin-specific interaction of Actinomycesfimbriae with oral streptococci. In: Mergenhagen, S.E., and B. Rosan (eds.), Molecular Basis of Oral Microbial Adhesion. American Society for microbiology, Washington, pp. 159–163.Google Scholar
  22. Cisar, J.O., A.L.Sandberg, and W.B. Clark. 1989. Molecular aspects of adherence of Actinomyces viscosusand Actinomyces naeslundiito oral surfaces. J. Dent. Res. 68: 1558–1559.Google Scholar
  23. Clark, W.B., L.L. Bammann, and R.J. Gibbons. 1978. Comparative estimates of bacterial affinities and adsorption sites on hydroxyapatite surfaces. Infect. Immun. 19: 846–853.PubMedGoogle Scholar
  24. Clark, W.B., M.D. Lane, J.E. Beem, S.L. Bragg, and T.T. Wheeler. 1985. Relative hydrophobicities of Actinomyces viscosusand Actinomyces naeslundiistrains and their adsorption to saliva-treated hydroxyapatite. Infect. Immun. 47: 730–736.PubMedGoogle Scholar
  25. Clark, W.B., J.E. Beem, W.E. Nesbitt, J.O. Cisar, C.C. Tseng, and M.J. Levine. 1989. Pellicle receptors for Actinomyces viscosustype 1 fimbriae in vitro. Infect. Immun. 57: 3003–3008.Google Scholar
  26. Costello, A.H., J.O. Cisar, P.E. Kolenbrander, and O. Gabriel. 1979. Neuraminidasedependent hemagglutination of human erythrocytes by human strains of Actinomyces viscosusand Actinomyces naeslundii. Infect. Immun. 26: 563–572.Google Scholar
  27. Cowan, M.M., K.G. Taylor, and R.J. Doyle. 1986. Kinetics analysis of Streptococcus sanguisadhesion to artificial pellicle. J. Dent. Res. 65: 1278–1280.PubMedGoogle Scholar
  28. Cowan, M.M., K.G. Taylor, and R.J. Doyle. 1987a. Role of sialic acid in the kinetics of Streptococcus sanguisadhesion to artificial pellicle. Infect. Immun. 55: 1552–1557.Google Scholar
  29. Cowan, M.M., K.G. Taylor, and R.J. Doyle. 1987b. Energetics of the initial phase of adhesion of Streptococcus sanguisto hydroxylapatite. J. Bacteriol. 169: 2995–3000.Google Scholar
  30. Curzon, M.E.J. 1983. Epidemiology of trace elements and dental caries. In: M.E. Curzon, T.W. Curtress, and A. F. Gardner (eds.), Trace Elements and Dental Disease. Postgraduate Dental Handbook Series, vol. 9. John Wright PSG, Inc., Littleton, MA, pp. 11–30.Google Scholar
  31. Dawson, J.R. and R.P. Ellen. 1990. Tip-oriented adherence of Treponema denticolato fibronectin. Infect. Immun. 58: 3924–3928.PubMedGoogle Scholar
  32. Demuth, D.R., E.E. Golub, and D. Malamud. 1990. Streptococcal-host interactions: structural and functional analysis of a Streptococcus sanguisreceptor for a human salivary glycoprotein. J. Biol. Chem. 265: 7120–7126.PubMedGoogle Scholar
  33. Doyle, R.J., W.E. Nesbitt, and K.G. Taylor. 1982. On the mechanism of adherence of Streptococcus sanguisto hydroxylapatite. FEMS Microbiol. Lett. 15: 1–5.Google Scholar
  34. Doyle, R.J., M. Rosenberg, and D. Drake. 1990. Hydrophobicity of oral bacteria. In: Doyle, R.J. and M. Rosenberg (eds.), Microbiol Cell Surface Hydrophobicity. American Society for Microbiology, Washington, pp. 387–419.Google Scholar
  35. Drake, D., K.G. Taylor, A.S. Bleiweis, and R.J. Doyle. 1988a. Specificity of the glucanbinding lectin of Streptococcus cricetus. Infect. Immun. 56: 1864–1872.Google Scholar
  36. Drake, D., K.G. Taylor, and R.J. Doyle. 1988b. Expression of glucan-binding lectin of Streptococcus cricetusrequires manganous ion. Infect. Immun. 56: 2205–2207.Google Scholar
  37. Erickson, P.R. and M.C. Herzberg. 1987. A collagen-like immunodeterminant on the surface of Streptococcus sanguisinduces platelet aggregation. J. Immunol. 138: 3360–3366.PubMedGoogle Scholar
  38. Erickson, P.R. and M.C. Herzberg. 1990. Purification and partial characterization of a 65 kDa platelet aggregation-associated protein antigen from Streptococcus sanguis. J. Biol. Chem. 265: 14080–14087.Google Scholar
  39. Fachon-Kalweit, S., B.L. Elder, and P. Fives-Taylor. 1985. Antibodies that bind to fimbriae block adhesion of Streptococcus sanguisto saliva-coated hydroxyapatite. Infect. Immun. 48: 617–624.PubMedGoogle Scholar
  40. Fenno, J.C., D.J. LeBlanc, and P.M. Fives-Taylor. 1989. Nucleotide sequence of a type 1 fimbrial gene of Streptococcus sanguisFW213. Infect. Immun. 57: 3527–3533.PubMedGoogle Scholar
  41. Fives-Taylor, P.M. and Thompson, D.W. 1985. Surface properties of Streptococcus sanguisFW 213 mutants non-adherent to saliva-coated hydroxyapatite. Infect. Immun. 47: 752–759.PubMedGoogle Scholar
  42. Fujioka, Y., Y. Akagawa, S. Minagi, H. Tsuru, Y. Miyake, and H. Suginaka. 1987. Adherence of Streptococcus mutansto implant materials. J. Biomed. Mater. Res. 21: 913–920.Google Scholar
  43. Ganeshkumar, N., P.M. Hannam, P.E. Kolenbrander, and B.C. McBride. 1991. Nucleotide sequence of a gene coding for a saliva-binding protein (Ssa B) from Streptococcus sanguis12 and possible role of the protein in coaggregation with Actinomyces. Infect. Immun. 59: 1093–1099.Google Scholar
  44. Gibbons, R.J. 1984. Adherent interactions which may affect microbial ecology in the mouth. J. Dent. Res. 63: 378–385.PubMedGoogle Scholar
  45. Gibbons, R.J. and I. Etherden. 1983. Comparative hydrophobicities of oral bacteria and their adherence to salivary pellicles. Infect. Immun. 41: 1190–1196.PubMedGoogle Scholar
  46. Gibbons, R.J. and R.J. Fitzgerald. 1969. Dextran-induced agglutination of Streptococcus mutansand its potential role in the formation of microbial dental plaques. J. Bacteriol. 98: 341–346.PubMedGoogle Scholar
  47. Gibbons, R.J. and M. Nygaard. 1970. Interbacterial aggregation of plaque bacteria. Arch. Oral Biol. 15: 1397–1400.PubMedGoogle Scholar
  48. Gibbons, R.J. and J.B. Qureshi. 1978. Selective binding of blood-group reactive salivary mucins by Streptococcus mutansand other oral organisms. Infect. Immun. 22: 665–671.PubMedGoogle Scholar
  49. Gibbons, R.J. and J.V. Qureshi. 1979. Inhibition of adsorption of Streptococcus mutansstrains to saliva-treated hydroxyapatite by galactose and certain amines. Infect. Immun. 26: 1214–1217.PubMedGoogle Scholar
  50. Gibbons, R.J., I. Etherden, and Z. Skobe. 1983a. Association of fimbriae with the hydrophobicity of Streptococcus sanguisFC-1 and adherence to salivary pellicles. Infect. Immun. 41: 414–417.Google Scholar
  51. Gibbons, R.J., E.C. Moreno, and I. Etherden. 1983b. Concentration-dependent multiple binding on saliva-treated hydroxyapatite for Streptococcus sanguis. Infect. Immun. 39: 280–289.Google Scholar
  52. Gilmore, K.S., R.R.B. Russell, and J.J. Ferretti. 1990. Analysis of the Streptococcus downei gtfSgene, which specifies a glucosyltransferase that synthesizes soluble glucans. Infect. Immun. 58: 2452–2458.PubMedGoogle Scholar
  53. Goldberg, S. and M. Rosenberg. 1991. Bacterial desorption by commercial mouthwashes vs two-phase oil:water formulations. Biofouling 3: 193–198.Google Scholar
  54. Gotoh, N., S. Tanaka, and T. Nishino. 1989. Supersusceptibility to hydrophobic antimicrobial agents and cell surface hydrophobicity in Branhamella catarrhalis. FEMS Microbiol. Lett. 59: 211–214.Google Scholar
  55. Hamada, S. and H. Slade. 1980. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol. Rev. 44: 331–384.Google Scholar
  56. Handley, P.S. 1990. Structure, composition and functions of surface structures on oral bacteria. Biofouling 2: 239–264.Google Scholar
  57. Harty, D.W.S., M.D.P. Wilcox, J.E. Wyatt, P.C.F. Oyston, and P.S. Handley. 1990. The surface ultrastructure and adhesive properties of a fimbriate Streptococcus sanguisstrain and six non-fimbriate mutants. Biofouling 2: 75–86.Google Scholar
  58. Heeb, M.J., A.H. Costello, and O. Gabriel. 1982. Characterization of a galactose-specific lectin from Actinomyces viscosusby a model aggregation system. Infect. Immun. 38: 993–1002.PubMedGoogle Scholar
  59. Herzberg, M.C., P.R. Erickson, P.K. Kane, D.J. Clawson, C.C. Clawson, and F.A. Hoff. 1990. Platelet-interactive products of Streptococcus sanguisprotoplasts. Infect. Immun. 58: 4117–4125.PubMedGoogle Scholar
  60. Hogg, S.D. and J.E. Manning. 1988. Inhibition of adhesion of viridans streptococci to fibronectin-coated hydroxyapatite beads by lipoteichoic acid. J. Appl. Bacteriol. 65: 483–489.PubMedGoogle Scholar
  61. Hudson, M. and R. Curtiss, III. 1990. Regulation of expression of Streptococcus mutansgenes important to virulence. Infect. Immun. 58: 464–470.PubMedGoogle Scholar
  62. Jenkinson, H.F. and D.A. Carter. 1988. Cell surface mutants of Streptococcus sanguiswith altered adherence properties. Oral Microbiol. Immunol. 3: 53–57.PubMedGoogle Scholar
  63. Jones, S.J. 1972. A special relationship between spherical and filamentous microorganisms in mature human dental plaque. Arch. Oral Biol. 17: 613–616.PubMedGoogle Scholar
  64. Kelstrup, J. and T.D. Funder-Nielsen. 1974. Aggregation of oral streptococci with Fuso-bacterium and Actinomyces. J. Biol. Buccale 2:347–362.Google Scholar
  65. Knox, K.W., L.N. Hardy, L.J. Markevics, J.D. Evans, and A.J. Wicken. 1985. Comparative studies on the effect of growth conditions on adhesion, hydrophobicity, and extracellular protein profile of Streptococcus sanguisG9B. Infect. Immun. 50: 545–554.PubMedGoogle Scholar
  66. Kolenbrander, P.E. 1988. Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. Annu. Rev. Microbiol. 42: 627–656.PubMedGoogle Scholar
  67. Kolenbrander, P.E. 1989. Surface recognition among oral bacteria: multigeneric coaggregations and their mediators. CRC Crit. Rev. Microbiol. 17: 137–159.Google Scholar
  68. Kolenbrander, P.E. 1991. Coaggregation: adherence in the human oral microbial ecosystern. In: M. Dworkin (ed.), Microbial Cell—Cell Interactions. American Society for Microbiology, Washington, pp. 303–329.Google Scholar
  69. Kolenbrander, P.E. and R.N. Andersen. 1986. Multigeneric aggregations among oral bacteria: a network of independent cell-to-cell interactions. J. Bacteriol. 168: 851–859.PubMedGoogle Scholar
  70. Kolenbrander, P.E. and R.N. Andersen. 1988. Intergeneric rosettes: sequestered surface recognition among human periodontal bacteria. Appl. Environ. Microbiol. 54: 1046–1050.PubMedGoogle Scholar
  71. Kondo, W., M. Sato and H. Ozawa. 1976. Haemagglutinating activity of Leptotrichia buccalis cells and their adherence to saliva-coated enamel powder. Arch. Oral Biol. 21: 363–369.PubMedGoogle Scholar
  72. Landale, E.C. and M.M. McCabe. 1987. Characterization by affinity electrophoresis of an a1,6glucan-binding protein from Streptococcus sobrinus. Infect. Immun. 55: 3011–3016.Google Scholar
  73. Lantz, M.S., R.W. Rowland, L.M. Switalski, and M. Hook. 1986. Interactions of Bacteroides gingivalis with fibrinogen. Infect. Immun. 54: 654–658.PubMedGoogle Scholar
  74. Leach, S.A. 1970. A review of the biochemistry of dental plaque. In: McHugh, W.D. (ed.), Dental Plaque. Churchill Livingstone, Edinburgh, pp. 143–156.Google Scholar
  75. Leach, S.A. and E.A. Agalamanyi. 1984. Hydrophobic interactions that may be involved in the formation of dental plaque. In: ten Cate, J.M., S.A. Leach, and J. Arends (eds.), Bacterial Adhesion and Preventive Dentistry. IRL Press, Oxford, pp. 43–50.Google Scholar
  76. Leach, S.A. and C.A. Saxton. 1966. An electron microscopic study of the acquired pellicle and plaque formed on the enamel of human incisors. Arch. Oral Biol. 11: 1081–1094.PubMedGoogle Scholar
  77. Leach, S.A., P. Critchley, A.B. Kolendo, and C.A. Saxton. 1967. Salivary glycoproteins as components of the enamel integuments. Caries Res. 1: 104–111.PubMedGoogle Scholar
  78. Lee, S.F., A. Progulske-Fox, G.W. Erdos, D.A. Piacentini, G.Y. Aya-kawa, P.J. Crowley, and A.S. Bleiweis. 1989. Construction and characterization of isogenic mutants of Streptococcus mutans deficient in major surface protein antigen P1 (11II). Infect. Immun. 57: 3306–3313.PubMedGoogle Scholar
  79. Levine, M.J., M.C. Herzberg, M.S. Levine, S.A. Ellison, M.W. Stinson, and T. Van Dyke. 1978. Specificity of salivary-bacterial interaction: role of terminal sialic acid residues in the interaction of salivary glycoproteins with Streptococcus sanguis and Streptococcus mutans. Infect. Immun. 19: 107–115.PubMedGoogle Scholar
  80. Liang, L., D. Drake, and R.J. Doyle. 1989. Stability of the glucan-binding lectin of oral streptococci. J. Dent. Res. 68: 16–77.Google Scholar
  81. Liljemark, W.F., S.V. Schauer, and C.G. Bloomquist. 1978. Compounds which affect the adherence of Streptococcus sanguis and Streptococcus mutans to hydroxyapatite. J. Dent. Res. 57: 373–379.PubMedGoogle Scholar
  82. Liljemark, W.F., C.G. Bloomquist, and L.J. Fenner. 1985. Characteristics of the adherence of oral Haemophilis species to an experimental salivary pellicle and to other oral bacteria. In: Mergenhagen, S.E. and B. Rosan (eds.), Molecular Basis of Oral Microbial Adhesion. American Society for Microbiology, Washington, pp. 94–102.Google Scholar
  83. Loesche, W.J. 1986. Role of Streptococcus mutansin human dental decay. Microbiol. Rev. 50: 353–380.PubMedGoogle Scholar
  84. Loesche, W.J., S.A. Syed, E. Schmidt, and E.C. Morrison. 1985. Bacterial profiles of subgingival plaque in periodontitis. J. Periodontol. 56: 447–456.PubMedGoogle Scholar
  85. London, J., A.R. Hand, E.I. Weiss, and J. Allen. 1989. Bacteriodes loescheiPK1295 cells express two distinct adhesins simultaneously. Infect. Immun. 57: 3940–3944.Google Scholar
  86. Lowrance, J.H., D.L. Hasty, and W.A. Simpson. 1988. Adherence of Streptococcus sanguisto conformationally specific determinants in fibronectin. Infect. Immun. 56: 2279–2285.PubMedGoogle Scholar
  87. Lowrance, J.H., L.M. Baddour, and W.A. Simpson. 1990. The role of fibronectin binding in the rat model of experimental endocarditis caused by Streptococcus sanguis. J. Clin. Invest. 86: 7–13.Google Scholar
  88. Lü-Lü, J.S. Singh, M.Y. Galperin, D. Drake, K.G. Taylor, and R.J. Doyle. 1992. Chelating agents inhibit activity and prevent expression of streptococcal glucan-binding lectins. Infect. Immun. 60: 3807–3813.PubMedGoogle Scholar
  89. Mangan, D.F., M.J. Novak, S.A. Vora, J. Mourad, and P.S. Kriger. 1989. Lectinlike interactions of Fusobacterium nucleatumwith human neutrophils. Infect. Immun. 57: 3601–3611.PubMedGoogle Scholar
  90. Marsh, P. and M. Martin. 1984. Oral Microbiology, 2nd ed. American Society for Microbiology, Washington.Google Scholar
  91. McBride, B.C. and J.S. van der Hoeven. 1981. Role of interbacterial adherence in the colonization of the oral cavities of gnotobiotic rats infected with Streptococcus mutansand Veillonella alcalescens. Infect. Immun. 33: 467–474.Google Scholar
  92. McBride, B.C., M. Song, B. Krasse, and J. Olsson. 1984. Biochemical and immunological differences between hydrophobic and hydrophilic strains of Streptococcus mutans. Infect. Immun. 44: 68–75.Google Scholar
  93. McCabe, M.M. and R. Hamelik. 1978. Multiple forms of dextran-binding proteins from Streptococcus mutans. Adv. Exp. Biol. Med. 107: 749–759.Google Scholar
  94. McCabe, M.M. and E.E. Smith. 1975. Relationship between cell-bound dextransucrase and the agglutination of Streptococcus mutans. Infect. Immun. 12: 512–520.Google Scholar
  95. McCabe, M.M., A.U. Haynes, and R.M. Hamelik. 1976. Cell adherence of Streptococcus mutans. In: Stiles, H.M., W.J. Loesche, and T.C. O’Brien (eds.), Proceedings Microbial Aspects of Dental Caries(a special supplement to Microbiology Abstracts Vol. 3. Information Retrieval, Inc., Washington, pp. 413–424.Google Scholar
  96. McCabe, M.M., R. Hamelik, and E. Smith. 1977. Purification of dextran-binding protein from cariogenic Streptococcus mutans. Biochem. Biophys. Res. Commun. 78: 273–278.Google Scholar
  97. McIntire, F.C. 1985. Specific surface components and microbial coaggregation. In: Mergenhagen, S.E. and B. Rosan (eds.), Molecular Basis of Oral Microbial Adhesion. American Society for Microbiology, Washington, pp. 153–158.Google Scholar
  98. McIntire, F.C., A.E. Vatter, J. Baros, and J. Arnold. 1978. Mechanism of coaggregation between Actinomyces viscosusT14V and Streptococcus sanguis34. Infect. Immun. 21: 978–988.PubMedGoogle Scholar
  99. McIntire, F.C., L.K. Crosby, and A.E. Vatter. 1982. Inhibitors of coaggregation between Actinomyces viscosusT14V and Streptococcus sanguis34: ß-galactosides, related sugars and anionic amphipathic compounds. Infect Immun. 36: 371–78.PubMedGoogle Scholar
  100. McIntire, F.C., L.K. Crosby, J.J. Barlow, and K.L. Matta. 1983. Structural preferences of ß-galactoside-reactive lectins on Actinomyces viscosusT14V and Actinomyces naeslundiiWVU45. Infect. Immun. 41: 848–850.PubMedGoogle Scholar
  101. McIntire, F.C., C.A. Bush, S.S. Wu, S.C. Li, Y.T. Li, M. McNeil, S.S. Tjoa, and P.V. Fennessey. 1987. Structure of a new hexasaccharide from the coaggregation polysaccharide of Streptococcus sanguis34. Carbohydr. Res. 166: 133.PubMedGoogle Scholar
  102. Meyer, D.H., P.K. Sreenivasan, and P.M. Fives-Taylor. 1991. Evidence for invasion of a human oral cell line by Actinobacillus actinomycetemcomitans. Infect. Immun. 59: 2719–2726.Google Scholar
  103. Mongiello, J.R. and W.A. Falkler, Jr. 1979. Sugar inhibition of oral Fusobacterium nucleatumhaemagglutination and cell binding. Arch Oral Biol. 24: 539–545.PubMedGoogle Scholar
  104. Mooser, G. and C. Wong. 1988. Isolation of a glucan-binding domain of glucosyltransferase (1,6-a-glucan synthase) from Streptococcus sobrinus. Infect. Immun. 56: 880–884.Google Scholar
  105. Morris, E.J. and B.C. McBride. 1983. Aggregation of Streptococcus sanguisby a neuraminidase-sensitive component of serum and crevicular fluid. Infect. Immun. 42: 1073–1080.PubMedGoogle Scholar
  106. Morris, E.J. and B.C. McBride. 1984. Adherence of Streptococcus sanguisto saliva- coated hydroxyapatite: evidence for two binding sites. Infect. Immun. 43: 656–663.PubMedGoogle Scholar
  107. Morris, E.J., N. Ganeshkumar, and B.C. McBride. 1985. Cell surface components of Streptococcus sanguis: relationship to aggregation, adherence, and hydrophobicity. J. Bacteriol. 164: 255–262.PubMedGoogle Scholar
  108. Murray, P.A., M.J. Levine, L.A. Tabak, and M.S. Reddy. 1982. Specificity of salivary-bacterial interactions: II. Evidence for a lectin on Streptococcus sanguiswith specificity for a NeuAca2,3G01,3Ga1NAc sequence. Biochem. Biophys. Res. Commun. 106: 390–396.PubMedGoogle Scholar
  109. Nesbitt, W.E., R.J. Doyle, K.G. Taylor, R.H. Staat, and R.R. Arnold. 1982a. Positive cooperativity in the binding of Streptococcus sanguisto hydroxylapatite. Infect. Immun. 35: 157–165.Google Scholar
  110. Nesbitt, W.E., R.J. Doyle, and K.G. Taylor. 1982b. Hydrophobic interactions and the adherence of Streptococcus sanguisto hydroxylapatite. Infect. Immun. 38: 637–644.Google Scholar
  111. Nyvad, B. and O. Fejerskov. 1987a. Scanning electron microscopy of early microbial colonization of human enamel and root surfaces in vivo. Scand. J. Dent. Res. 95: 287–296.Google Scholar
  112. Nyvad, B. and O. Fejerskov. 1987b. Transmission electron microscopy of early microbial colonization of human enamel and root surfaces in vivo. Scand. J. Dent. Res. 95: 297–307.Google Scholar
  113. Nyvad, B. and M. Kilian. 1987. Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand. J. Dent. Res. 95: 369–380.Google Scholar
  114. Oakley, J.D., K.G. Taylor, and R.J. Doyle. 1985. Trypsin-susceptible cell surface characteristics of Streptococcus sanguis. Can. J. Microbiol. 31: 1103–1107.Google Scholar
  115. Okuda, K., A. Yamamoto, Y. Naito, I. Takazoe, J. Slots, and R.J. Genco. 1986. Purification and properties of a hemagglutinin from culture supernatants of Bacteroides gingivalis. Infect. Immun. 54: 659–665.Google Scholar
  116. Olsson, J. and C.G. Emilson. 1988. Implantation and cariogenicity in hamsters of Streptococcus mutanswith different hydrophobicity. Scand. J. Dent. Res. 96: 85–90.PubMedGoogle Scholar
  117. Olsson, J. and G. Westergren. 1982. Hydrophobic surface properties of oral streptococci. FEMS Microbiol. Lett. 15: 319–323.Google Scholar
  118. Peros, W.J. and R.J. Gibbons. 1982. Influence of sublethal antibiotic concentrations on bacterial adherence to saliva-treated hydroxyapatite. Infect. Immun. 35: 326–334.PubMedGoogle Scholar
  119. Peros, W.J., I. Etherden, R.J. Gibbons, and Z. Skobe. 1985. Alteration of fimbriation and cell hydrophobicity by sublethal concentrations of tetracycline. J. Periodont. Res. 20: 24–30.PubMedGoogle Scholar
  120. Reynolds, E.C. and A. Wong. 1983. Effect of absorbed protein on hydroxyapatite zeta potential and Streptococcus mutansadherence. Infect. Immun. 39: 1285–1290.PubMedGoogle Scholar
  121. Robrish, S.A., C. Oliver, and J. Thompson. 1987. Amino acid-dependent transport of sugars by Fusobacterium nucleatumATCC 10953. J. Bacteriol. 169: 3891–3897.PubMedGoogle Scholar
  122. Rogers, A.H., K. Pilowsky, and P.S. Zilm. 1984. The effect of growth rate on the adhesion of the oral bacteria Streptococcus mutansand Streptococcus milleri. Arch. Oral Biol. 29: 147–150.Google Scholar
  123. Rolla, G., R.V. Oppermann, W.H. Bowen, J.E. Ciardi, and K.W. Knox. 1980. High amounts of lipoteichoic acid in sucrose-induced plaque in vivo. Caries Res. 14: 235–238.Google Scholar
  124. Rolla, G., J.E. Ciardi, M. Deas, A. Lau, and W.H. Bowen. 1984. Adherence of active glucosyltransferase from Streptococcus mutansto ionic, hydrophobic and dextran surfaces. In: ten Cate, J.M., S.A. Leach, and J. Arends (eds.), Bacterial Adhesion and Preventive Dentistry. IRL Press, Oxford, pp. 133–142.Google Scholar
  125. Rolla, G., A.A.Scheie, and J.E. Ciardi. 1985. Role of sucrose in plaque formation. Scand J. Dent Res. 93: 105–111.Google Scholar
  126. Rosenberg, M., H. Judes, and E. Weiss. 1983. Cell surface hydrophobicity of dental plaque microorganisms in situ. Infect. Immun. 42: 831–834.Google Scholar
  127. Rosenberg, M., A. Buivids, and P. Ellen. 1991. Adhesion of Actinomyces viscosusto Porphyromonas (Bacteroides) gingivales-coatedhexadecane droplets. J. Bacteriol. 173: 2581–2589.PubMedGoogle Scholar
  128. Russell, R.R.B. 1979. Glucan-binding proteins of Streptococcus mutansserotype c. J. Gen. Microbiol. 112: 197–201.PubMedGoogle Scholar
  129. Russell, R.R.B. 1990. Molecular genetics of glucan metabolism in oral streptococci. Arch. Oral Biol. 35: 53–58.Google Scholar
  130. Russell, R.R.B., A.C. Donald, and C.W.I. Douglas. 1983. Fructosyltransferase activity of the glucan-binding protein from Streptococcus mutans. J. Gen. Microbiol. 129: 3243–3250.Google Scholar
  131. Townsend-Lawman, P. and A.S. Bleiweis. 1991. Multilevel control of extracellular binding protein from Streptococcus mutansin Escherichia coli. J. Gen. Microbiol. 131: 295–299.Google Scholar
  132. Russell, R.R.B., E. Abdulla, M.L. Gilpin, and K. Smith. 1986. Characterization of Streptococcus mutanssurface antigens. In: Hamada, S., S.M. Michalek, H. Kiyono, L. Menaker, and J.R. McGhee (eds.), Molecular Microbiology and Immunobiology of Streptococcus mutans. Elsevier, Amsterdam, pp. 61–70.Google Scholar
  133. Satou, J., A. Fukunaga, N. Satou, H. Shintani, and K. Okuda. 1988. Streptococcal adherence on various restorative materials. J. Dent. Res. 67: 588–591.PubMedGoogle Scholar
  134. Saunders, J.M. and C.H. Miller. 1980. Attachment of Actinomyces naeslundiito human buccal epithelial cells. Infect. Immun. 29: 981–989.PubMedGoogle Scholar
  135. Schilling, K.M. and W.H. Bowen. 1988. The activity of glucosyltransferase absorbed onto saliva-coated hydroxyapatite. J. Dent. Res. 67: 2–8.PubMedGoogle Scholar
  136. Schilling, K.M., M.H. Blitzer, and W.H. Browen. 1989. Adherence of Streptococcus mutansto glucans formed in situin salivary pellicle. J. Dent. Res. 68: 1678–1680.Google Scholar
  137. Seow, W.K., G.J. Seymour, and Y.H. Thong. 1987. Direct modulation of human neutro-phil adherence of coaggregating periodontopathic bacteria. Int. Arch. Allergy Appl. Immun. 83: 121–128.Google Scholar
  138. Seow, W.K., P.S. Bird, G.J. Seymour, and Y.H. Thong. 1989. Modulation of human neutrophil adherence by periodontopathic bacteria: reversal by specific monoclonal antibodies. Int. Arch Allergy Appl. Immun. 9: 24–30.Google Scholar
  139. Shinjo, T., H. Hazu, and H. Kiyoyama. 1987. Hydrophobicity of Fusobacterium necrophorumbiovars A and B. FEMS Microbiol. Lett. 48: 243–247.Google Scholar
  140. Slots, J., D. Moenbo, J. Langebaek, and A. Frandsen. 1978. Microbiota of gingivitis in man. Scand J. Dent. Res. 86: 174–181.PubMedGoogle Scholar
  141. Socransky, S.S., A.D. Manganiello, D. Propas, V. Oram, and J. van Houte. 1977. Bacteriological studies of developing supragingival plaque. J. Periodontal Res. 12: 90–106.PubMedGoogle Scholar
  142. Svanberg, M., G. Westergren, and J. Olsson. 1984. Oral implantation in humans of Streptococcus mutansstrains with different degrees of hydrophobicity. Infect. Immun. 43: 817–821.PubMedGoogle Scholar
  143. Syed, S.A. and W.J. Loesche. 1978. Bacteriology of human experimental gingivitis: effect of plaque age. Infect. Immun. 21: 821–829.PubMedGoogle Scholar
  144. Tardiff, G., M.C. Sulavik, G.W. Jones, and D.B. Clewell. 1989. Spontaneous switching of the sucrose-promoted colony phenotype in Streptococcus sanguis. Infect. Immun. 57: 3945–3948.Google Scholar
  145. Theilade, E. 1990. Factors controlling the microflora of the healthy mouth. In: Hill, M.J. and P.D. Marsh (eds.), Human Microbial Ecology. CRC Press, Boca Raton, FL, pp. 1–56.Google Scholar
  146. Thomas, D.D., B. Baseman, and F. Alderete. 1986. Enhanced levels of attachment of fibronectin-primed Treponema pallidumto extracellular matrix. Infect. Immun. 52: 736–741.PubMedGoogle Scholar
  147. Townsend-Lawman, P. and A.S. Bleiweis. 1991. Multilevel control of extracellular sucrose metabolism in Streptococcus salivariusby sucrose. J. Gen. Microbiol. 137: 513.Google Scholar
  148. van Pelt, A.W.J., A.H. Weerkamp, M.H.W.J.C. Uyen, H.J. Busscher, H.P. deJong, and J. Arends. 1985. Adhesion of Streptococcus sanguisCH3 to polymers with different surface free energies. Appl. Environ. Microbiol. 49: 1270–1275.PubMedGoogle Scholar
  149. van Steenbergen, T.J.M., F. Namavar, and J. de Graaff. 1985. Chemiluminescence of human leukocytes by black-pigmented Bacteroidesstrains from dental plaque and other sites. J. Periodont. Res. 20: 58–71.PubMedGoogle Scholar
  150. van der Mei, H.C., A.H. Weerkamp, and H.J. Busscher. 1987. Physico-chemical surface characteristics and adhesive properties of Streptococcus salivariusstrains with defined cell surface structures. FEMS Microbiol. Lett. 40: 15–19.Google Scholar
  151. Weerkamp, A.H. and P.S. Handley. 1986. The growth rate regulates the composition and density of the fibrillar coat on the surface of Streptococcus salivarius Kcells. FEMS Microbiol. Leu. 33: 179–183.Google Scholar
  152. Weerkamp, A.H., H.C. van der Mei, and J.W. Slot. 1987. Relationship of cell surface morphology and composition of Streptococcus salivarius K+to adherence and hydrophobicity. Infect. Immun. 55: 438–445.PubMedGoogle Scholar
  153. Weiss, E., M. Rosenberg, H. Judes, and E. Rosenberg. 1982. Cell-surface hydrophobicity of adherent oral bacteria. Curr. Microbiol. 7: 125–128.Google Scholar
  154. Weiss, E.I., J. London, P.E. Kolenbrander, and R.N. Andersen. 1989. Fimbria-associated adhesin of Bacteroides loescheithat recognizes receptors on procaryotic and eucaryotic cells. Infect. Immun. 57: 2912–2913.PubMedGoogle Scholar
  155. Westergren, G. and J. Olsson. 1983. Hydrophobicity and adherence of oral streptococci after repeated subculture in vitro. Infect. Immun. 40: 432–435.PubMedGoogle Scholar
  156. Wilkes, P.D. and Leach, S.A. 1979. The factors involved in the adsorption of glycoproteins from saliva onto hydroxyapatite surfaces. J. Dent. 7: 213–220.PubMedGoogle Scholar
  157. Willcox, M.D.P. and D.B. Drucker. 1989. Surface structures, coaggregation and adher- ence phenomena of Streptococcus oralisand related species. Microbios 59: 19–29.PubMedGoogle Scholar
  158. Willcox, M.D.P., J.E. Wyattt, and P.S. Handley. 1989. A comparison of the adhesive properties and surface ultrastructure of the fibrillar Streptococcus sanguis12 and an adhesion deficient nonfibrillar mutant 12 na. J. Appl. Bacteriol. 66: 291–299.PubMedGoogle Scholar
  159. Winkler, J.R., S.R. John, R.H. Kramer, C.I. Hoover, and P.A. Murray. 1987. Attachment of oral bacteria to a basement-membrane-like matrix and to purified matrix proteins. Infect. Immun. 55: 2721–2726.PubMedGoogle Scholar
  160. Yamazaki, Y., S. Ebisu, and H. Okada 1981. Eikenella corrodensadherence to human buccal epithelial cells. Infect. Immun. 31: 21–27.Google Scholar
  161. Zhang, X.-hua, M. Rosenberg, and R.J. Doyle. 1990. Inhibition of the cooperative adhesion of Streptococcus sanguisto hydroxylapatite FEMS Microbiol. Leu. 71: 315–318.Google Scholar

Copyright information

© Chapman & Hall, Inc. 1994

Authors and Affiliations

  • Itzhak Ofek
    • 1
  • Ronald J. Doyle
    • 2
  1. 1.Tel-AvivIsrael
  2. 2.LouisvilleUSA

Personalised recommendations