Advertisement

Interaction of Bacteria with Phagocytic Cells

  • Itzhak Ofek
  • Ronald J. Doyle

Abstract

Phagocytic cells, unlike other cells of soft and hard tissue, are preordained to engulf organisms. The interaction of bacteria with phagocytic cells may be either beneficial or harmful to the bacteria. In some cases, the bacteria survive in phagocytes, thereby escaping from environmental challenge, whereas in other cases the outcome is lethal. In order for the phagocyte to recognize and ingest a bacterium it must possess receptors complementary to the bacterial surface. Several bacterial species have been found to express adhesins for which receptors are accessible on the phagocytic membrane. Three major nonopsonic mechanisms of interaction of bacteria with phagocytic cells in a serum-free system have been described (Table 7–1). One of these, termed lectinophagocytosis, is based on recognition between surface lectins on one cell and carbohydrates on the opposing cell. The second mechanism involves protein-protein interactions via the Arg-Gly-Asp (RGD) sequence. The final mechanism involves hydrophobic interactions between the two cell types.

Keywords

Human Neutrophil Phagocytic Cell Bacterial Adhesion Neisseria Gonorrhoeae Blood Clearance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Absolom, D.R. 1988. The role of bacterial hydrophobicity in infection: bacterial adhesion and phagocytic ingestion. Can. J. Microbiol. 34: 287–298.PubMedCrossRefGoogle Scholar
  2. Alkan, M.L., L. Wong, and F.J. Silverblatt. 1986. Change in degree of type 1 piliation of Escherichia coli during experimental peritonitis in the mouse. Infect. Immun. 52: 549–554.Google Scholar
  3. Ashwell, C. and H. Hartford. 1982. Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem. 51: 531–554.PubMedCrossRefGoogle Scholar
  4. Ashwell, G. and A.G. Morell. 1974. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv. Enzymol. 42: 99–128.Google Scholar
  5. Athamna, A. and I. Ofek. 1988. Enzyme-linked immunosorbent assay for quantitation of attachment and ingestion stages of bacterial phagocytosis. J. Clin. Microbiol. 26: 62–66.PubMedGoogle Scholar
  6. Athamna, A., I. Ofek, Y. Keisari, S. Markowitz, G.G.S. Dutton, and N. Sharon. 1991. Lectinophagocytosis of encapsulated Klebsiella pneumoniae mediated by surface lectins of guinea pig alveolar macrophages and human monocyte-derived macrophages. Infect. Immun. 59: 1673–1682.PubMedGoogle Scholar
  7. Baenzinger, J.N. and Y. Maynard. 1980. Human hepatic lectin. J. Biol. Chem. 255: 4607–4613.Google Scholar
  8. Bar-Shavit, Z., I. Ofek, R. Goldman, D. Mirelman, and N. Sharon. 1977. Mannose residues on phagocytes as receptors for the attachment of Escherichia coli and Salmonella typhi. Biochem. Biophys. Res. Commun. 78: 455–460.PubMedCrossRefGoogle Scholar
  9. Bar-Shavit, Z., R. Goldman, I. Ofek, N. Sharon, and D. Mirelman. 1980. Mannosebinding activity of Escherichia coli: a determinant of attachment and ingestion of the bacteria by macrophages. Infect. Immun. 29: 417–424.PubMedGoogle Scholar
  10. Bermudez, L.E., L.S. Young, and H. Enkel. 1991. Interaction of Mycobacterium avium complex with human macrophages: roles of membrane receptors and serum proteins. Infect. Immun. 59: 1697–1702.PubMedGoogle Scholar
  11. Beuth, I., H.L. Ko, and G. Pulverer. 1988. The role of staphylococcal lectins in human granulocyte stimulation. Infection 16: 46–48.PubMedCrossRefGoogle Scholar
  12. Bjorksten, B. and T. Wadström. 1982. Interaction of Escherichia coli with different fimbriae and polymorphonuclear leukocytes. Infect. Immun. 38: 298–305.PubMedGoogle Scholar
  13. Blumenstock, E. and K. Jann. 1982. Adhesion of piliated Escherichia coli strains to phagocytes. Differences between bacteria with mannose-sensitive pili and those with mannose-resistant pili. Infect. Immun. 35: 264–269.PubMedGoogle Scholar
  14. Boner, G., A.M. Mhashilkar, M. Rodriguez-Ortega, and N. Sharon. 1989. Lectinmediated, non-opsonic phagocytosis of type 1 Escherichia coli by human peritoneal macrophages of uremic patients treated by peritoneal dialysis. J. Leuk. Biol. 46: 239–245.Google Scholar
  15. Boner, G., A.M. Mhashilkar, M. Rodriguez-Ortega, and N. Sharon the binding of lipoteichoic acid to polymorphonuclear leucocytes of human blood. Infect. Immun. 32: 625–631.Google Scholar
  16. Drickamer, K. 1988. Two distinct classes of carbohydrate-recognition domains in animal lectins. J. Biol. Chem. 263: 9557–9560.PubMedGoogle Scholar
  17. Elkins, C. and R.F. Rest. 1990. Monoclonal antibodies to outer membrane protein PII block interactions of Neisseria gonorrhoeae with human neutrophils. Infect. Immun. 58: 1078–1084.PubMedGoogle Scholar
  18. Ezekowitz, R.A.B., K. Sastry, P. Bailly, and A. Warner. 1990. Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate-recognition domains and phagocytosis of yeasts in Cos-I cells. J. Exp. Med. 172: 1785–1794.PubMedCrossRefGoogle Scholar
  19. Ezekowitz, R.A.B., D.J. Williams, H. Koziel, M.Y.K. Armstrong, A. Warner, F.F. Richards, and R.M. Rose, 1991. Uptake of Pneumocystis carinii mediated by the macrophage mannose receptor. Nature 351: 155–158.PubMedCrossRefGoogle Scholar
  20. Farrell, C.F. and R.F. Rest. 1990. Up-regulation of human neutrophil receptors for Neisseria gonorrhoeae expressing PII outer membrane proteins. Infect. Immun. 58: 2777–2784.PubMedGoogle Scholar
  21. Farries, T.C. and J.P. Atkinson. 1991. Evolution of the complement system. Immun. Today p. 295–306.Google Scholar
  22. Firon, N., I. Ofek, and N. Sharon. 1983. Carbohydrate specificity of the surface lectins of Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium. Carbohydr. Res. 120: 235–249.PubMedCrossRefGoogle Scholar
  23. Firon, N., D. Duksin, and N. Sharon. 1985. Mannose specific adherence of Escherichia coli to BHK cells that differ in their glycosylation patterns. FEMS Microbiol. Lett. 27: 161–165.Google Scholar
  24. Garber, H., N. Sharon, D. Shohet, J.S. Lam, and R.J. Doyle. 1985. Contribution of hydrophobicity to hemagglutination reactions of Pseudomonas aeruginosa. Infect. Immun. 50: 336–337.PubMedGoogle Scholar
  25. Gbarah, A., A.M. Mhashilkar, G. Boner, and N. Sharon. 1989. Involvement of protein kinase C in activation of human granulocytes and peritoneal macrophages by type 1 fimbriated (mannose specific) Escherichia coli. Biochem. Biophys. Res. Commun. 165: 1243–1249.PubMedCrossRefGoogle Scholar
  26. Gbarah, A., C.G. Gahmberg, I. Ofek, U. Jacobi, and N. Sharon. 1991. Identification of the leukocyte adhesion molecules CD11/CD18 as receptors for type 1 fimbriated (mannose specific) Escherichia coli. Infect. Immun. 59: 4524–4530.PubMedGoogle Scholar
  27. Goetz, M.B. and F.J. Silverblatt. 1987. Stimulation of human polymorphonuclear leukocyte oxidate metabolism by type 1 pili from Escherichia coli. Infect. Immun. 55: 534–540.PubMedGoogle Scholar
  28. Goetz, M.B., S.M. Kuriyama, and F.J. Silverblatt. 1987. Phagolysosome formation by polymorphonuclear neutrophilic leukocytes after ingestion of Escherichia coli that express type 1 pili. J. Infect. Dis. 156: 229–233.PubMedCrossRefGoogle Scholar
  29. Goldhar, J., M. Yavzori, Y. Keisari, and I. Ofek. 1991. Phagocytosis of Escherichia coli mediated by mannose resistant non-fimbrial haemagglutinin (NFA-1). Microb. Pathogen. 11: 171–178.CrossRefGoogle Scholar
  30. Gotschlich, E. 1983. Thoughts on the evolution of strategies used by bacteria for evasion of host defenses. Rev. Infect. Dis. 5 (suppl 4): S778 - S783.PubMedCrossRefGoogle Scholar
  31. Guerina, N.G., T.W. Kessler, V.J. Guerina, M.R. Neutra, H.W. Clegg, S. Langermann, F.A. Scannapieco, and D.A. Goldmann. 1983. The role of pili and capsule in the pathogenesis of neonatal infection with Escherichia coli K J. Infect. Dis. 148: 395–405.PubMedCrossRefGoogle Scholar
  32. Hagberg, L., R. Hull, S. Hull, S. Falkow, R. Freter, and C. Svanborg-Eden. 1983. Contribution of adhesion to bacterial persistence in the mouse urinary tract. Infect. Immun. 40: 265–272.PubMedGoogle Scholar
  33. Irvin, R.T. 1990. Hydrophobicity of proteins and bacterial fimbriae. In: Doyle, R.J. and M. Rosenberg (eds.), Microbial Cell Surface Hydrophobicity. American Society for Microbiology, Washington, pp. 137–177.Google Scholar
  34. Iwahi, T. and A. Imada. 1988. Interaction of Escherichia coli with polymorphonuclear leukocytes in pathogenesis of urinary tract infection in mice. Infect. Immun. 57: 947–953.Google Scholar
  35. Kasper, D.L., C.J. Baker, B. Galdes, and E. Katzenellenbogen. 1983. Immunochemical analysis and immunogenicity of the type II group B streptococcal capsular polysaccharide. J. Clin. Invest. 72: 260–269.Google Scholar
  36. Keith, B.R., S.L. Harris, P.W. Russell, and P.E. Orndorff. 1990. Effect of type 1 piliation on in vitro killing of Escherichia coli by mouse peritoneal macrophages. Infect. Immun. 58: 3448–3454.PubMedGoogle Scholar
  37. Kelly, N.M., J.L. Kluftinger, B.L. Pasloske, W. Paranchych, and R.E.W. Hancock. 1989. Pseudomonas aeruginosa pili as ligands for nonopsonic phagocytosis by fibronectin-stimulated macrophages. Infect. Immun. 57: 3841–3845.PubMedGoogle Scholar
  38. King, G.J. and J. Swanson. 1978. Studies on gonococcus infection. XV. Identification of surface proteins of Neisseria gonorrhoeae correlated with leukocyte association. Infect. Immun. 21: 575–583.PubMedGoogle Scholar
  39. King, G.J. J.F. James, and J. Swanson. 1978. Studies of gonococcus infection. II. Comparison of in vivo and in vitro association of Neisseria gonorrhoeae with human neutrophils. J. Infect. Dis. 137: 38–43.PubMedCrossRefGoogle Scholar
  40. Kurashima, C., A.L. Sandberg, J.O. Cisar, and L.L. Mudrick, 1991. Cooperative complement and bacterial lectin initiated bactericidal activity of polymorphonuclear leuocytes. Infect. Immun. 59: 216–221.PubMedGoogle Scholar
  41. Kuriyama, S.M. and F.J. Silverblatt. 1986. Effect of Tamm—Horsfall urinary glycoprotein on phagocytosis and killing of type 1-fimbriated Escherichia coli. Infect. Immun. 51: 193–198.PubMedGoogle Scholar
  42. Naids, F.L. and R.F. Rest. 1991. Stimulation of human neutrophil oxidative metabolism by nonopsonized Neisseria gonorrhoeae. Infect. Immun. 59: 4383–4390.PubMedGoogle Scholar
  43. Naids, F.L., B. Belisle, N. Lee, and R.F. Rest. 1991. Interactions of Neisseria gonorrhoeae with human neutrophils: studies with purified PII (opa) outer membrane proteins and synthetic opa peptides. Infect. Immun. 59: 4628–4635.PubMedGoogle Scholar
  44. Ofek, I. 1989. Lectinophagocytosis mediated by bacterial surface lectins. Zbl. Bakt. Hgy. A 270: 449–455.Google Scholar
  45. Ofek, I. and E.H. Beachey. 1979. Lipoteichoic acid-sensitive attachment of group A streptococci to phagocytes. In: Parker, M.T. (ed.), Pathogenic Streptococci, Redbooks, Ltd., Chertsey, Surrey, England, pp. 44–46.Google Scholar
  46. Ofek, I. and N. Sharon. 1988. Lectinophagocytosis: a molecular mechanism of recognition between cell surface sugars and lectins in the phagocytosis of bacteria. Infect. Immun. 56: 539–547.PubMedGoogle Scholar
  47. Ofek, I. and F.J. Silverblatt. 1982. Bacterial surface structures involved in adhesion to phagocytic and epithelial cells. In: D. Schlessinger (ed.), Microbiology-1982. American Society for Microbiology, Washington, pp. 296–300.Google Scholar
  48. Lehrman, A.M. and R.L. Hill. 1986. The binding of fucose-containing glycoproteins by hepatic lectins. Purification of a fucose-binding lectin from rat liver. J. Biol. Chem. 16: 7419–7425.Google Scholar
  49. Lock, R., C. Dahlgren, M. Linden, O. Stendahl, A. Svensbergh, and L. Ohman. 1990. Neutrophil killing of two type I fimbria-bearing Escherichia coli strains: dependence on respiratory burst activation. Infect. Immun. 58: 37–42.PubMedGoogle Scholar
  50. Maayan, M.L., I. Ofek, O. Medalia, and M. Aronson. 1985. Population shift in mannosespecific fimbriated phase of Klebsiella pneumoniae during experimental urinary tract infection in mice. Infect. Immun. 79: 785–689.Google Scholar
  51. Mangan, D.F. and J.S. Snyder. 1979. Mannose-sensitive interactions of Escherichia coli with human peripheral leukocytes in vitro. Infect. Immun. 26: 520–527.PubMedGoogle Scholar
  52. Marre, R. and J. Hacker. 1987. Role of S- and common type 1 fimbriae of Escherichia coli in experimental upper and lower urinary tract infection. Microb. pathogen. 2: 223–226.CrossRefGoogle Scholar
  53. Miki, Y., S. Ebisu, and H. Okada. 1987. The adherence of Eikenella corrodens to guinea pig macrophages in the absence and presence of anti-bacterial antibodies. J. Periodont. Res. 22: 359–365.PubMedCrossRefGoogle Scholar
  54. Ogmundsdottir, H.M. and D.M. Weir. 1976. The characteristics of binding of Corynebacterium parvum to glass-adherent mouse peritoneal exudate cells. Clin. Exp. Immunol. 26: 334–339.PubMedGoogle Scholar
  55. Ohman, L., J. Hed, and O. Stendahl. 1982. Interaction between human polymorphonuclear leukocytes and two different strains of type 1 fimbriae-bearing Escherichia coli. J. Infect. Dis. 146: 751–757.PubMedCrossRefGoogle Scholar
  56. Ohman, L., K.E. Magnusson, and O. Stendahl. 1985. Mannose-specific and hydrophobic interaction between Escherichia coli and polymorphonuclear leukocytes-influence of bacterial culture period. Acta Pathol. Microbiol. Immunol. Scand. Sect. B 93: 125–131.Google Scholar
  57. Ohman, L., G. Maluszynska, K.-E. Magnusson, and O. Stendal. 1988. Surface interactions between bacteria and phagocytic cells. Prog. Drug Res. 32: 131–147.PubMedGoogle Scholar
  58. Passo, S., S.A. Syed, and J. Silva. 1982. Neutrophil chemiluminescence in response to Fusobacterium nucleatum. J. Periodont. Res. 17: 604–613.PubMedCrossRefGoogle Scholar
  59. /Bacterial Adhesion to Cells & Tissues Perry, A. and I. Ofek. 1984. Inhibition of blood clearance and hepatic tissue binding of Escherichia coli by liver lectin-specific sugars and glycoproteins. Infect. Immun. 43: 257–262.Google Scholar
  60. Perry, A., Y. Keisari, and I. Ofek. 1985. Liver cell and macrophage surface lectins as determinants of recognition in blood clearance and cellular attachment of bacteria. FEMS Microbiol. Lett. 27: 345–350.Google Scholar
  61. Perry, A., I. Ofek, and F.J. Silverblatt. 1983. Enhancement of mannose-mediated stimulation of human granulocytes by type 1 fimbriae aggregated with antibodies on Escherichia coli surfaces. Infect. Immun. 39: 1334–1345.PubMedGoogle Scholar
  62. Rauvala, H. and J. Finne. 1979. Structural similarity of the terminal carbohydrate sequence of glycoproteins and glycolipids. FEBS Lett. 97: 1–8.PubMedCrossRefGoogle Scholar
  63. Relman, D., E. Tuomanen, S. Falkow, D.T. Golenbock, K. Saukkonen, and S.D. Wright. 1990. Recognition of a bacterial adhesin by an integrin: macrophage CR3 (a,,,ß2, CD11b/CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell 61: 1375–1382.PubMedCrossRefGoogle Scholar
  64. Rest, R.F., N. Lee, and C. Bowden. 1985. Stimulation of human leukocytes by protein II+ gonococci is mediated by lectin-like gonococcal components. Infect. Immun. 50: 116–122.Google Scholar
  65. Rodriguez-Ortega, M., I. Ofek, and N. Sharon. 1987. Membrane glycoproteins of human polymorphonuclear leukocytes that act as receptors for mannose-specific Escherichia coli. Infect. Immun. 55: 968–973.PubMedGoogle Scholar
  66. Rottini, G., F. Cian, M.R. Soranzo, R. Albrigo,and P. Patriarc. 1979. Evidence for the involvement of human polymorphonuclear leukocyte mannose-like receptors in the phagocytosis of Escherichia coli. FEBS Lett. 105: 307–312.PubMedCrossRefGoogle Scholar
  67. Salmon, J.E., S. Kapur, and R.P. Kimberly. 1987. Opsonin-independent ligation of Fc2 receptors: the 3G8-bearing receptors on neutrophils mediate the phagocytosis of concanavalin A-treated erythrocytes and nonopsonized Escherichia coli. J. Exp. Med. 166: 1783–1813.Google Scholar
  68. Sandberg, A.L., L.L. Mudrick, J.O. Cisar, J.A. Metcalf, and H.L. Malech. 1988. Stimulation of superoxide and lactoferrin release from polymorphonuclear leucocytes by the type 2 fimbrial lectin of Actinomyces viscosus T14V. Infect. Immun. 56: 267–269.PubMedGoogle Scholar
  69. Saukkonen, K.M.J., B. Nowicki, and M. Leinonen. 1988. Role of type 1 and S fimbriae in the pathogenesis of Escherichia coli: 018:K1 bacteremia and 018:K1 meningitis in the infant rat. Infect. Immun. 56: 892–897.PubMedGoogle Scholar
  70. Saukkonen, K., C. Cabellos, M. Burroughs, S. Prasad, and E. Tuomanen. 1991. Integrinmediated localization of Bordetella pertussis within macrophages: role in pulmonary colonization. J. Exp. Med. 173: 1143–1149.PubMedCrossRefGoogle Scholar
  71. Sauter, S.L., S.M. Rutherfurd, C. Wagener, J.E. Shively, and S.A. Hefta. 1991. Binding of nonspecific cross-reacting antigen, a granulocyte membrane glycoprotein, to Escherichia coli expressing type 1 fimbriae. Infect. Immun. 59: 2485–2493.PubMedGoogle Scholar
  72. Schaeffer, A.J., W.R. Schwan, S.J. Hultgren, and J.L. Duncan. 1987. Relationship of type 1 pilus expression in Escherichia coli to ascending urinary tract infection. Infect. Immun. 55: 373–380.PubMedGoogle Scholar
  73. Schwartz, A.L. and D. Rup. 1983. Biosynthesis of the human asialoglycoprotein receptor. J. Biol. Chem. 258: 11249–11255.PubMedGoogle Scholar
  74. Shafer, W.M. and R.F. Rest. 1989. Interactions of gonococci with phagocytic cells. Annu. Rev. Microbiol. 43: 121–145.PubMedCrossRefGoogle Scholar
  75. Shepherd, V.L., E.J. Campbell, R.M. Senior, and P.D. Stahl. 1982. Characterization of the mannose/fucose receptor on human mononuclear phagocytes. J. Reticuloendothelial Soc. 32: 423–431.Google Scholar
  76. Silverblatt, F.J. and I. Ofek. 1983. Interaction of bacterial pili and leukocytes. Infection 11: 235–238.PubMedCrossRefGoogle Scholar
  77. Silverblatt, F.J., J.S. Dreyer, and S. Schauer. 1979. Effect of pili on susceptibility of Escherichia coli type 1 pili and capsular polysaccharides on the interaction between bacteria and human granulocytes. Scand. J. Immunol. 20: 299–305.Google Scholar
  78. Soderstrom, T., and L. Ohman. 1984. The effect of monoclonal antibodies against Escherichia coli type 1 pili and capsular polysaccharides on the interaction between bacteria and human granulocytes. Scand. J. Immunol. 20: 299–305.PubMedCrossRefGoogle Scholar
  79. Speert, D.P., B.A. Loh, D.A. Cabral, and I.E. Salit. 1986. Nonopsonic phagocytosis of nonmucoid Pseudomonas aeruginosa by human neutrophils and monocyte-derived macrophages is correlated with bacterial piliation and hydrophobicity. Infect. Immun. 53: 207–212.PubMedGoogle Scholar
  80. Speert, D.P., D.W. Samuel, S.C. Silverstein, and M. Bernadette. 1988. Functional characterization of unopsonized Pseudomonas aeruginosa. J. Clin. Invest. 82: 872–879.PubMedCrossRefGoogle Scholar
  81. Steadman, R., N. Topley, D.E. Jenner, M. Davies, and J.D. Williams. 1988. Type 1 fimbriate Escherichia coli stimulates a unique pattern of degranulation by human polymorphonuclear leukocytes. Infect. Immun. 56: 815–822.PubMedGoogle Scholar
  82. Sutherland, I.W., L. Graham, and D.M. Weir. 1978. The role of cell wall carbohydrates in binding microorganisms to mouse peritoneal exudate macrophages. Acta. Pathol. Microbiol. Scand. Sect. B 86: 53–57.Google Scholar
  83. Svanborg-Eden, C.F., L.J. Bjursten, R. Hull, K.E. Magnusson, Z. Meldoveno, and H. Leffler. 1984. Influence of adhesins on the interaction of Escherichia coli with human phagocytes. Infect. Immun. 44: 672–680.PubMedGoogle Scholar
  84. Swanson, J., E. Sparks, B. Zeligs, M.A. Siam, and C. Parrott. 1974. Studies on gonococcus infection. V. Observations on in vitro interactions of gonococci and human neutrophils. Infect. Immun. 10: 633–644.PubMedGoogle Scholar
  85. Swanson, J., E. Sparks, D. Young, and G. King. 1975. Studies on gonococcus infection. X. Pili and leukocyte association factor as mediators of interactions between gonococci and eukaryotic cells in vitro. Infect. Immun. 11: 1352–1361.PubMedGoogle Scholar
  86. Taylor, M.E., J.T. Conary, M.R. Lennartz, P.D. Stahl, and K. Drickamer, 1990. Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains. J. Biol. Chem. 265: 12156–12162.PubMedGoogle Scholar
  87. Van Oss, C.J. 1978. Phagocytosis as a surface phenomenon. Annu. Rev. Microbiol. 32: 19–39.PubMedCrossRefGoogle Scholar
  88. Van’T Wout, J., W.N. Burnette, V. Mar, P. Gordon, S.D. Wright, and E. Tuomanen. 1991. The role of pertussis toxin subunits in adherence of Bordetella pertussis to human macrophages. Abstr., General meeting, American Society for Microbiology, 113.Google Scholar
  89. Ventur, Y., J. Scheffer, J. Hacker, W. Goebel, and W. Konig. 1990. Effects of adhesins from mannose-resistant Escherichia coli on mediator release from human lymphocytes, monocytes and basophils and from polymorphonuclear granulocytes. Infect. Immun. 58: 1500–1508.PubMedGoogle Scholar
  90. Virji, M. and J.E. Heckels. 1986. The effect of protein II and pili on the interaction of Neisseria gonorrhoeae with human polymorphonuclear leukocytes. J. Gen. Microbiol. 132: 503–512.PubMedGoogle Scholar
  91. Wan, G.A. 1980. A macrophage receptor for (mannose/glucosamine) glycoprotein of potential importance in phagocytic activity. Biochem. Biophys. Res. Commun. 93: 737–945.Google Scholar
  92. Wileman, T.E., M.R. Lennartz, and P.D. Stahl. 1986. Identification of the macrophage mannose receptor as a 175-kDa membrane protein. Proc. Natl. Acad. Sci. USA 83: 2501–2505.PubMedCrossRefGoogle Scholar
  93. Wilson, M.E. and R.D. Pearson. 1988. Roes of CR3 and mannose receptor in the attachment and ingestion of Leishmania donovani by human mononuclear phagocytes. Infect. Immun. 56: 363–369.PubMedGoogle Scholar

Copyright information

© Chapman & Hall, Inc. 1994

Authors and Affiliations

  • Itzhak Ofek
    • 1
  • Ronald J. Doyle
    • 2
  1. 1.Tel-AvivIsrael
  2. 2.LouisvilleUSA

Personalised recommendations