Skip to main content

Animal Cell Membranes as Substrata for Bacterial Adhesion

  • Chapter
Bacterial Adhesion to Cells and Tissues

Abstract

The purpose of this chapter is to review briefly the composition and organization of animal cell surface structures that may be potential receptors for adhesins of bacteria. The understanding of the specificity of animal cell—bacteria interactions requires a basic knowledge of the molecular structure of the animal cell surface, especially of those molecules that serve as receptors for ligands in general and for bacterial adhesins in particular. All animal cell membranes share common compositional and organizational features (Figure 3-1): (1) The major membrane lipids are arranged in a planar bilayer configuration that is predominantly in a “fluid” state under physiological conditions. The membrane lipids are commonly composed of glycerolphospholipids, sphingolipids, and sterols. (2) The bilayer membrane contains integral membrane constituents composed of both glycolipids and glycoproteins that are inserted or “intercalated” into the bilayer structure. (3) Other glycoproteins and proteins are bound to the surface of the plasma membrane by weak ionic interactions, hydrogen bonding, or the hydrophobic effect. These surface-associated glycoproteins and proteins bound to integral membrane structures are referred to as peripheral or extrinsic components. (4) In many animal cells there is a substantial layer of carbohydrate-containing materials of variable thicknesses outside the plasma membrane but in close or intimate association with the membrane. This layer is known as the cell coat or extracellular matrix. The distinction between membrane constituents as being integral, peripheral, or belonging to the cell coat is based on the method required to dissociate the constituent in question from the cell membrane. The integral constituents may be released only after disruption or perturbation of the phospholipid bilayer, usually by detergents (Lichtenberg et al., 1983). Nonintegral surface constituents are commonly released by washing the cells with buffers of different pH or ionic strength, or by using chelating agents, such as ethylenediaminetetraacetic acid (EDTA). There is no general method, however, to release selectively either peripheral or extracellular matrix constituents. As a result, the distinction between the two classes of membrane constituents is sometimes difficult to resolve and very often they are referred to as nonintegral membrane constituents. One of the key features of the membrane is its asymmetry. For nonglycosylated lipids the asymmetry is only partial, in that every phospholipid is present on both sides of the bilayer but in different amounts. In human erythrocytes, for example, lipids with positively charged head groups (e.g., phosphatidylethanolamine and phosphatidylserine) are predominant in the internal leaflet facing the cytoplasm (Marinetti and Crain, 1978). The asymmetry with respect to proteins, glycoproteins, and glycolipids is absolute: every molecule of a given membrane constituent has the same orientation across the lipid bilayer, with the carbohydrate moieties of the glycosylated compounds always exposed on the outer surface. For further information on the organization of the animal cell membrane, the reader is referred to reviews (Lodish et al., 1981; Lotan and Nicolson, 1981; Singer, 1981; Aplin and Hughes, 1982) and a book (Sim, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aplin, J.D. and R.C. Hughes. 1982. Complex carbohydrates of the intracellular matrix: structures, interactions and biological roles. Biochim. Biophys. Acta 694: 375–418.

    PubMed  CAS  Google Scholar 

  • Ashwell, G. and J. Harford. 1982. Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem. 51: 531–554.

    Article  PubMed  CAS  Google Scholar 

  • Beachey, E.H., W.A. Simpson, I. Ofek, D.K. Hasty, J.B. Dale, and E. Whitnack. 1983. Attachment of Streptococcus pyogenes to mammalian cells. Rev. Infect. Dis. 5: 5670–5677.

    Article  Google Scholar 

  • Callies, R., G. Schwarzmann, K. Radsak, R. Siegert, and H. Wiegandt. 1977. Characterization of the cellular binding of exogenous gangliosides. Eur. J. Biochem. 80: 425–423.

    Article  PubMed  CAS  Google Scholar 

  • Cherry, R.J. 1979. Rotational and lateral diffusion of membrane proteins. Biochim. Biophys. Acta 559: 289–327.

    PubMed  CAS  Google Scholar 

  • Clamp, J. 1974. Analysis of glycoproteins. Biochem. Soc. Symp. 40: 3–16.

    PubMed  Google Scholar 

  • Critchley, D.R. 1979. Glycolipids as membrane receptors important in growth regulation. In: Hynes, R.O. (ed.), Surfaces of Normal and Malignant Cells. John Wiley & Sons, New York, pp. 63–101.

    Google Scholar 

  • Critchley, D.R., C.H. Streuli, S. Kellie, S. Ansell, and B. Patel. 1982. Characterization of the cholera toxin receptor on Balb/C3T3 cells as a ganglioside similar to, or identical with, ganglioside GM,: no evidence for galactoproteins with receptor activity. Biochem. J. 204: 209–219.

    PubMed  CAS  Google Scholar 

  • Cuatrecasas. P. 1974. Membrane receptors. Annu. Rev. Biochem. 43: 169–214.

    Article  PubMed  CAS  Google Scholar 

  • Duk, M., E. Lisowska, M. Kordowicz, and K. Wasniowska. 1982. Studies on the specificity of the binding site of Vicia graminea anti-N lectin. Eur. J. Biochem. 123: 105–112.

    Article  PubMed  CAS  Google Scholar 

  • Edidin, M. 1974. Rotational and translational diffusion in membranes. Annu. Rev. Biophys. Bioeng. 8: 165–193.

    Google Scholar 

  • Eytan, G.D. 1982. Use of liposomes for reconstruction of biological function. Biochim. Biophys. Acta 694: 185–202.

    PubMed  CAS  Google Scholar 

  • Feldner, J., W. Bredt, and I. Kahane. 1979. Adherence of erythrocytes to Mycoplasma pneumoni ae. Infect. Immun. 30: 554–561.

    Google Scholar 

  • Findlay, J.B.C. 1974. The receptor proteins for concanavalin A and Lens culinaris phytohemagglutinin in the membrane of the human erythrocyte. J. Biol. Chem. 249: 4398–4403.

    PubMed  CAS  Google Scholar 

  • Finean, J.B., R. Coleman, and R.H. Mitchell. 1984. Membranes and Their Cellular Function, 3rd ed. Blackwell, Oxford.

    Google Scholar 

  • Finne, J. 1980. Identification of the blood-group ABO-active glycoprotein components of human erythrocyte membrane. Eur. J. Biochem. 104: 181–189.

    Article  PubMed  CAS  Google Scholar 

  • Fishman, P.H. 1982. Role of membrane gangliosides in the binding and action of bacterial toxins. J. Membr. Biol. 69: 85–97.

    Article  PubMed  CAS  Google Scholar 

  • Flowers, H.M. and N. Sharon. 1979. Glycosidases-properties and application to the study of complex carbohydrates and cell surfaces. Adv. Enzymol. 48: 29–95.

    PubMed  CAS  Google Scholar 

  • Fukuda, M. and M.N. Fukuda. 1978. Changes in cell surface glycoproteins and carbohydrate structures during the development and differentiation of human erythroid cells. J. Supramol. Struct. 8: 313–324.

    Google Scholar 

  • Gahmberg, C.G. 1977. Cell surface proteins: changes during cell growth and malignant transformation. In: Poste, G. and G.L. Nicholson (eds.), Cell Surface Reviews. North-Holland, Amsterdam, pp. 371–421.

    Google Scholar 

  • Gahmberg, C.G. 1981. Membrane glycoproteins and glycolipids: structure, localization and function of carbohydrates. In: Finean, J.B. and R.H. Mitchell (eds.), Membrane Structure. Elsevier/North-Holland, Amsterdam, pp. 127–160.

    Chapter  Google Scholar 

  • Gahmberg, C.G. and L.C. Anderson. 1982. Surface glycoproteins of malignant cells. Biochim. Biophys. Acta 651: 65–83.

    PubMed  CAS  Google Scholar 

  • Garoff, H. 1979. Structure and assembly of the Semliki Forest virus membrane. Biochem. Soc. Trans. 7: 301–306.

    PubMed  CAS  Google Scholar 

  • Geiger, B. 1983. Membrane cytoskeleton interactions. Biochim. Biophys. Acta 737: 305–341.

    PubMed  CAS  Google Scholar 

  • Hakomori, S. 1981. Glycosphingolipids in cellular interaction, differentiation and oncogenesis. Annu. Rev. Biochem. 50: 733–764.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R.O. and K.M. Yamada. 1982. Fibronectins: multifunctional molecular glycoproteins. J. Cell Biol. 95: 369–377.

    Article  PubMed  CAS  Google Scholar 

  • Izhar, M., Y. Nuchamowitz, and D. Mirelman. 1982. Adherence of Shigella flexneri to guinea pig intestinal cells is mediated by a mucosal adhesin. Infect. Immun. 35: 1110–1118.

    PubMed  CAS  Google Scholar 

  • Kallenius, G., S.B. Svensson, R. Mollby, B. Cedergren, H. Hultberg, and J. Winberg. 1981. Structure of carbohydrate part of receptor on human uroepithelial cells for pyelonephritogenic Escherichia coli. Lancet 2: 604–606.

    CAS  Google Scholar 

  • Koscielak, J., H. Miller-Podraza, R. Krauze, and A. Piasek. 1976. Isolation and characterization of poly(glycosyl) ceramides (megaloglycolipids) with A,H and I blood-group activities. Eur. J. Biochem. 71: 9–18.

    Article  PubMed  CAS  Google Scholar 

  • Leffler, H. and C. Svanborg-Eden. 1981. Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells. Infect. Immun. 34: 920–929.

    PubMed  CAS  Google Scholar 

  • Lichtenberg, D., R.J. Robson, and E.A. Dennis. 1983. Solubilization of phospholipids by detergents: structural and kinetic aspects. Biochim. Biophys. Acta 737: 285–304.

    PubMed  CAS  Google Scholar 

  • Lodish, H.F., W.A. Braell, A.L. Schwartz, G.J.A.M. Strous, and A. Zilberstein. 1981. Synthesis and assembly of membrane and organelle proteins. Int. Rev. Cytol. Suppl. 12: 247–307.

    PubMed  CAS  Google Scholar 

  • Lotan, R. and G.L. Nicolson. 1981. Plasma membrane of eukaryotes, In: Schwartz, L.M. and M.M. Azar (eds.), Advanced Cell Biology. Van Nostrand-Reinhold, Princeton, NJ, pp. 129–154.

    Google Scholar 

  • Marchesi, V.T., H., Furthmayr, and M., Tornita. 1976. The red cell membrane. Annu. Rev. Biochem. 45: 667–698.

    Article  PubMed  CAS  Google Scholar 

  • Marinetti, G.V. and R.C., Crain, 1978. Topology of amino-phospholipids in the red-cell membrane. J. Supramol. Struct. 8: 191–213.

    Article  CAS  Google Scholar 

  • Mirelman, D. and I. Ofek. 1986. Introduction to microbial lectins and agglutinins. In: Mirelman, D. (ed.), Microbial Lectins and Agglutinins. John Wiley & Sons, New York, pp. 1–19.

    Google Scholar 

  • Nicolson, G.L. 1976. Trans-membrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence of cell surface components. Biochim. Biophys. Acta 457: 57–108.

    PubMed  CAS  Google Scholar 

  • Nicolson, G.L. 1979. Topographic display of cell surface components and their role in trans-membrane signaling. Curr. Top. Dev. Biol. 3: 305–338.

    Article  Google Scholar 

  • Ofek, I., H. Lis, and N. Sharon. 1985. Animal cell surface membranes. In: Savage, D.C. and M. Fletcher (eds.), Bacterial Adhesion: Mechanisms and Physiological Significance, Plenum Press, New York, pp. 71–88.

    Google Scholar 

  • Prives, J.M. 1980. Nicotinic acetylcholine receptors. In: Schulster, D. and A. Levitski (eds.), Cellular Receptors for Hormones and Neurotransmitters. John Wiley & Sons, New York, pp. 331–351.

    Google Scholar 

  • Raff, M.C. and S. dePetris. 1973. Movement of lymphocyte surface antigens and receptors: the fluid nature of the lymphocyte plasma membrane and its immunological significance. Fed. Proc. 32: 48–54.

    PubMed  CAS  Google Scholar 

  • Roth, J. 1980. The use of lectins as probes for carbohydrates-cytochemical techniques and their application in studies on cell surface dynamics. Acta Histochem. Suppl. 22: 113–121.

    PubMed  CAS  Google Scholar 

  • Ruoslahti, E. 1988. Fibronectin and its receptors. Annu. Rev. Biochem. 57:375–413. Ruoslahti, E. 1991. Integrins. J. Clin. Invest. 87: 1–5.

    Google Scholar 

  • Ruoslahti, E., M. Pierschbacher, E.G. Hayman, and E. Engvall. 1982. Fibronectin: a molecule with remarkable structural and functional diversity. Trends Biochem. Sci. 7: 188–190.

    Article  CAS  Google Scholar 

  • Schulster, D. and A. Levitski (eds.). 1980. Cellular Receptors for Hormones and Neurotransmitters. John Wiley & Sons, New York.

    Google Scholar 

  • Sedlacek, H.H., J. Stark, F.R. Seiler, W. Ziegler, and H. Wiegandt. 1976. Cholera toxin induces redistribution of sialoglycolipid receptor at the lymphocyte membrane. FEBS Lett. 61: 272–276.

    Article  PubMed  CAS  Google Scholar 

  • Sharon, N. 1975. Complex Carbohydrates: Their Chemistry, Biosynthesis, and Functions. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Sharon, N. 1981. Glycoproteins in membranes. In: Balian, R., M. Chabre, and P.F. Devaux (eds.), Membranes and Intercellular Communications. North-Holland, Amsterdam, pp. 117–182.

    Google Scholar 

  • Sharon, N. and H. Lis 1981. Glycoproteins: research booming on long-ignored, ubiquitous compounds. Chem. Engr. News 59: 21–24.

    Article  CAS  Google Scholar 

  • Sharon, N. and H. Lis. 1982. Glycoproteins. In: Neurath, H., and R.L. Hill (eds.), The Proteins, Vol. V, 3rd ed. Academic Press, New York, pp. 1–144.

    Google Scholar 

  • Sharon, N. and H. Lis. 1989. Lectins as cell recognition molecules. Science 246: 227–234.

    Article  PubMed  CAS  Google Scholar 

  • Sim, E. 1982. Membrane Biochemistry. Chapman and Hall, London.

    Book  Google Scholar 

  • Singer, S.J. 1974. The molecular organization of membranes. Annu. Rev. Biochem. 43: 805–833.

    Article  PubMed  CAS  Google Scholar 

  • Singer, S.J. 1981. The cell membrane. In: Balian, R., M. Chabre, and P.F. Devaux (eds.), Membranes and Intercellular Communication. North-Holland, Amsterdam, pp. 1–16.

    Google Scholar 

  • Singer, S.J. and G.L. Nicolson. 1972. The fluid mosaic model of cell membranes. Science 175: 710–731.

    Article  Google Scholar 

  • Steck, T.L. 1978. Band 3 protein of the human red cell membrane: a review. J. Supramol. Struct. 8: 311–324.

    Article  PubMed  CAS  Google Scholar 

  • Tanner, M.J.A. 1978. Erythrocyte glycoproteins. Curr. Top. Membr. Transp. 11: 279–325.

    Article  CAS  Google Scholar 

  • Tollefsen, S.E. and R. Kornfeld. 1983. The B4 lectin from Vicia villosa interacts with N-acetylgalactosamine residues linked to serine or threonine residues in cell surface glycoproteins. J. Biol. Chem. 258: 5172–5176.

    PubMed  CAS  Google Scholar 

  • Wicken, A.J. and K.W. Knox. 1981. Composition and properties of amphiphiles. In: Shockman, G.D. and A.J. Wicken (eds.), Chemistry and Biological Activities of Bacterial Surface Amphiphiles. Academic Press, New York, pp. 1–7.

    Google Scholar 

  • Wiegandt, H., S. Kanda, K. Inoue, K. Utsumi, and S. Nojima. 1981. Studies on the cell association of exogenous glycolipids. Adv. Exp. Med. Biol. 152: 343–352.

    Google Scholar 

  • Yamakawa, T. and Y. Nagai. 1978. Glycolipids at the cell surface and their biological functions. Trends Biochem. Sci. 3: 128–131.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall, Inc.

About this chapter

Cite this chapter

Ofek, I., Doyle, R.J. (1994). Animal Cell Membranes as Substrata for Bacterial Adhesion. In: Bacterial Adhesion to Cells and Tissues. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6435-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6435-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6437-5

  • Online ISBN: 978-1-4684-6435-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics