Common Themes in Bacterial Adhesion

  • Itzhak Ofek
  • Ronald J. Doyle


Research in bacterial adhesion has yielded several common themes associated with bacteria—substratum interactions. Different organisms have evolved separate and distinct mechanisms of adhesion but many seem to require two mechanisms in order to survive on at least two different substrata. Physiological changes of bacteria or damage to substrata caused by the bacteria may be different in the various systems but appear to be events tightly associated with adhesion phenomena. Finally, interest in modulating bacterial adhesion revealed that there are several ways to interfere in the adhesion process in order to prevent or promote colonization on a particular substratum.


Neisseria Gonorrhoeae Tissue Culture Cell Lipoteichoic Acid Bordetella Pertussis Bacterial Clone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, J.M., C.S. Freitag, R.M. Gander, J.R. Clements, V.L. Thomas, and B.I. Eisenstein. 1986. Fimbrial phase variation and DNA rearrangements in uropathogenic isolates of Escherichia coli. Mol. Biol. Med. 3: 495–508.Google Scholar
  2. Abraham, S.N., J.P. Babu, C.S. Giampapa, D.L. Hasty, W.A. Simpson, and E.H. Beachey. 1985. Protection against Escherichia coli-induced urinary tract infections with hybridoma antibodies directed against type 1 fimbriae or complementary D-mannose receptors. Infect. Immun. 44: 625–628.Google Scholar
  3. Abraham, S.N., D. Sun, J.B. Dale, and E.H. Beachey. 1988. Conservation of the Dmannose-adhesin protein among type 1 fimbriated members of the family Enterobacteriaceae. Nature 336: 682–684.Google Scholar
  4. Adegbola, R.A. and D.C. Old. 1985. Fimbrial and non-fimbrial haemagglutinins in Enterobacter aerogenes. J. Med. Microbiol. 19: 35–43.Google Scholar
  5. Alkan, M.L. and E.H. Beachey. 1978. Excretion of lipoteichoic acid by group A strepto-cocci: influence of penicillin on excretion and loss of ability to adhere to human oral mucosal cells. J. Clin. Invest. 61: 671–677.PubMedGoogle Scholar
  6. Alkan, M.L., L. Wong, and F.J. Silverblatt. 1986. Change in degree of type 1 piliation of Escherichia coli during experimental peritonitis in the mouse. Infect. Immun. 54: 549554.Google Scholar
  7. Aly, R. and S. Levit. 1987. Adherence of Staphylococcus aureus to squamous epithelium: role of fibronectin and teichoic acid. Rev. Infect. Dis. 9: S341 - S350.PubMedGoogle Scholar
  8. Andersson, B., O. Ponnas, L.A. Hanson, T. Lagergard, and C. Svanborg-Eden. 1986. Inhibition of attachment of Streptococcus pneumoniae and Haemophilus influenzae by human milk and receptor oligosaccharides. J. Infect. Dis. 153: 232–237.PubMedGoogle Scholar
  9. Aronson, M., O Medalia, D. Amichay, and O. Nativ. 1988. Endotoxin-induced shedding of viable uroepithelial cells is an antimicrobial defense mechanism. Infect. Immun. 56: 1615–1617.PubMedGoogle Scholar
  10. Baddour, L.M., G.D. Christensen, W.A. Simpson, and E.H. Beachey. 1989. Microbial adherence. In: Mandel, G.L., R.G. Douglas, Jr., and J.F. Bennett (eds.), Principles and Practice of Infectious Disease, 3rd ed. John Wiley & Sons, New York, pp. 9–25.Google Scholar
  11. Bagg, J., I.R. Poxton, D.M. Weir, and P.W. Ross. 1982. Binding of type-III group B streptococci to buccal epithelial cells. J. Med. Microbiol. 15: 363–372.PubMedGoogle Scholar
  12. Baker, N., V. Minor, C. Deal, M.S. Ghahrabadi, D.A. Simpson, and D.E. Woods. 1991. Pseudomonas aeruginosa exoenzyme S is an adhesin. Infect. Immun. 59: 2859–2863.PubMedGoogle Scholar
  13. Bar-Shavit, F., R. Goldman, I. Ofek, N. Sharon, and D. Mirelman. 1980. Mannose binding activity of Escherichia coli, a determinant of attachment and ingestion of the bacteria by macrophages. Infect. Immun. 29: 417–424.PubMedGoogle Scholar
  14. Bartlett, D.H., M.E. Wright, and M. Silverman. 1988. Variable expression of extracellular polysaccharide in the marine bacterium Pseudomonas atlantica is controlled by genome rearrangement. Proc. Natl. Acad. Sci. USA 85: 3923–3927.PubMedGoogle Scholar
  15. Bassaris, H.P., P.E. Lianou, E.G. Votta, and J.T. Papavassiliou. 1984a. Effects of subinhibitory concentrations of cefotaxime on adhesion and polymorphonuclear leukocyte function with gram negative bacteria. J. Antimicrob. Chemother. 14: (Suppl B): 91–96.PubMedGoogle Scholar
  16. Bassaris, H.P., P.E. Lianou, and J.T. Papavassiliou. 1984b Interactions of inhibitory concentrations of clindamycin and Escherichia coli: effects on adhesion and polymorphonuclear leukocyte function. J. Antimicrob. Chemother. 13: 361–367.PubMedGoogle Scholar
  17. Beachey, E.H., B.I. Eisenstein, and I. Ofek. 1981. Sublethal antibiotics and bacterial adhesion. In: Elliott, K., M. O’Connor, and J. Whelan (eds.), Adhesion and Microorganism Pathogenicity. Pitman Medical Press, London, pp. 288–300.Google Scholar
  18. Beachey, E.H., B.I. Eisenstein, and I. Ofek. 1982. Prevention of the adhesion of bacteria to mucosal surfaces: influence of antimicrobial agents. In: H.-U. Eickenberg, H. Hahn, and W. Opferkuch (eds.), The Influence of Antibiotics on the Host-Parasite Relationship. Springer-Verlag KG, Berlin, pp. 171–182.Google Scholar
  19. Beachey, E.H., W.A. Simpson, I. Ofek, D.L. Hasty, J.B. Dale, and E. Whitnack. 1983. Attachment of Streptococcus pyogenes to mammalian cells. Rev. Infect. Dis. 5: S670 - S677.PubMedGoogle Scholar
  20. Bernard, J.P., P. Francioli, and M.P. Glauser. 1981. Vancomycin prophylaxis of experimental Streptococcus sanguis: inhibition of bacterial adherence rather than bacterial killing. J. Clin. Invest. 68: 1113–1116.PubMedGoogle Scholar
  21. Bessen, D. and E.C. Gotschlich. 1986. Interactions of gonococci with Hela cells: attachment, detachment, replication, penetration and the role of protein II. Infect. Immun. 54: 154–160.PubMedGoogle Scholar
  22. Beuth, J., H.L. Ko, Y. Ohshima, A. Yassin, G. Uhlenbruck, and G. Pulverer. 1988. The role of lectins and lipoteichoic acid in adherence of Staphylococcus saprophyticus. Zbl Bakt. A 268: 357–361.Google Scholar
  23. Bourgeau, G. and B.C. McBride. 1976. Dextran-mediated interbacterial aggregation between dextran-synthesizing streptococci and Actinomyces viscosus. Infect. Immun. 13: 1228–1234.Google Scholar
  24. Bovre, K. and L.O. Froholm. 1972. Variation of colony morphology reflecting fimbriation in Moraxella bovis and two reference strains of M. nonliquefaciens. Acta Pathol. Microbiol. Scand. B 80: 629–640.Google Scholar
  25. Brady, P.G., A.M. Vannier, and J.G. Banwell. 1978. Identification of dietary lectin, wheat-germ agglutinin in human intestinal contents. Gastroenterology 75: 236–239.PubMedGoogle Scholar
  26. Buchanan, K., S. Falkow, R.A. Hull, and S.I. Hull. 1985. Frequency among Enterobac- teriaceae of the DNA sequences encoding type 1 pili. J. Bacteriol. 162: 799–803.PubMedGoogle Scholar
  27. Carruthers, M.M. and W.J. Kabat. 1983. Mediation of staphylococcal adherence to mucosal cells by lipoteichoic acid. Infect. Immun. 40: 444–446.PubMedGoogle Scholar
  28. Chabanon, G. 1987. Bacterial adhesion: impact on antimicrobial therapy. Path. Biol. 35: 1365–1369.Google Scholar
  29. Chick, S., M.J. Harber, R. MacKenzie, and Asscher, A.W. 1981. Modified method for studying bacterial adhesion to isolated uroepithelial cells and uromucoid. Infect. Immun. 34: 256–261.PubMedGoogle Scholar
  30. Chopra, I. and A. Linton. 1986. The antibacterial effects of low concentrations of antibiotics. Adv. Microbial Physiol. 28: 211–259.Google Scholar
  31. Christensen, G.D., W.A. Simpson, A.L. Bisno, and E.H. Beachey. 1982. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 37: 318–326.PubMedGoogle Scholar
  32. Christensen, G.D., L.M. Baddour, and W.A. Simpson. 1987. Phenotypic variation of Staphylococcus epidermis slime production in vitro and in vivo. Infect. Immun. 55: 2870–2877.Google Scholar
  33. Chugh, T.D., G.J. Burns, H.J. Shuhaiber, and G.M. Bahr. 1990. Adherence of Staphylococcus epidermidis to fibrin-platelet clots in vitro mediated by lipoteichoic acid. Infect. Immun. 58: 315–319.PubMedGoogle Scholar
  34. Ciardi, J.E., G. Rolla, W.H. Bowen, and J.A. Riley. 1977. Adsorption of Streptococcus mutans lipoteichoic acid to hydroxyapatite. Scand. J. Dent. Res. 85: 387–391.PubMedGoogle Scholar
  35. Clerc, P. and P.J. Sansonetti, 1987. Entry of Shigella flexneri into HeLa cells: evidence for directed phagocytosis involving actin polymerization and myosin accumulation. Infect. Immun. 55: 2681–2688.PubMedGoogle Scholar
  36. Cohen, P.S., R. Rossol, V.J. Cabelli, S.L. Yang, and D.C. Laux. 1983. Relationship between the mouse colonizing ability of a human fecal Escherichia coli strain and its ability to bind a specific mouse colonic mucous gel protein. Infect. Immun. 40: 62–69.PubMedGoogle Scholar
  37. Cohen, P.S., J.C. Arruda, T.J. Williams, and D.C. Laux. 1985. Adhesion of human fecal Escherichia coli strain to mouse colonic mucus. Infect. Immun. 48: 139–145.PubMedGoogle Scholar
  38. Costerton, J.W., T.J. Marrie, and K.J. Cheng. 1985. Phenomena of bacterial adhesion. In: Savage, D.C. and M. Fletcher (eds.), Bacterial Adhesion. Plenum Press, New York, pp. 3–44.Google Scholar
  39. Cowan, M.M., K.G. Taylor, and R.J. Doyle. 1986. Kinetic analysis of Streptococcus sanguis adhesion to artificial pellicle. J. Dent. Res. 65: 1278–1283.PubMedGoogle Scholar
  40. Cowan, M.M., K.G. Taylor, and R.J. Doyle. 1987a. Energetics of the initial phase of adhesion of Streptococcus sanguis to hydroxylapatite. J. Bacteriol. 169: 2995–3000.PubMedGoogle Scholar
  41. Cowan, M.M., K.G. Taylor, and R.J. Doyle. 1987b. Role of sialic acid in the kinetics of Streptococcus sanguis adhesion to artificial pellicle. Infect. Immun. 55: 1552–1557.PubMedGoogle Scholar
  42. Crichton, P.B. and D.C. Old. Differentiation of strains of Escherichia coli: multiple typing approach. J. Clin. Microbiol. 11: 635–640.Google Scholar
  43. Dean, E.A. and R.E. Kessler. 1988. Quantitation of effects of subinhibitory concentrations of trimethoprim on P fimbria expression and in vitro adhesiveness of uropathogenic Escherichia coli. J. Clin. Microbiol. 26: 25–30.Google Scholar
  44. DeGraaf, F.K. 1990. Genetics of adhesive fimbriae of intestinal Escherichia coli. Curr. Top. Microbiol. Immunol. 151: 29–53.Google Scholar
  45. DeGraaf, F.K., P. Klaasen-Boor, and J.E. van Hees. 1980. Biosynthesis of the K99 surface antigen is repressed by alanine. Infect. Immun. 30: 125–128.Google Scholar
  46. DeRienzo, J.M., J. Porter-Kaufman, J. Haller, and B. Rosan. 1985. Corncob formation: a morphological model for molecular studies of bacterial interactions. In: Mergenhagen, S.E. and B. Rosan (eds.), Molecular Basis of Oral Microbial Adhesion. American Society for Microbiology, Washington, pp. 172–176.Google Scholar
  47. Dominick, M.A., M.J. F. Schmerr, and A.E. Jensen. 1985. Expression of type 1 pili of Escherichia coli strains of high and low virulence in the intestinal tract of gnotobiotic turkeys. Am. J. Vet. Res. 46: 270–275.PubMedGoogle Scholar
  48. Doyle, R. and K. Keller. 1984. Lectins in diagnostic microbiology. Eur. J. Clin. Microbiol. 3: 4–9.PubMedGoogle Scholar
  49. Doyle, R.J., M. Rosenberg, and D. Drake. 1990. Hydrophobicity of oral bacteria. In: Doyle, R.J., and M. Rosenberg (eds.), Microbial Cell Surface Hydrophobicity. American Society for Microbiology, Washington, pp. 387–419.Google Scholar
  50. Drake, D., K.G. Taylor, A.S. Bleiweis, and R.J. Doyle. 1988. Specificity of the glucanbinding lectin of Streptococcus cricetus. Infect. Immun. 56: 1864–1872.Google Scholar
  51. Drumm, B., A.M. Roberton, and P.M. Sherman. 1988. Inhibition of attachment of Escherichia coli RDEC-1 to intestinal microvillus membranes by rabbit ileal mucus and mucin in vitro. Infect. Immun. 56: 2437–2442.Google Scholar
  52. Duguid, J.P. and D.C. Old. 1980. Adhesive properties of Enterobacteriaceae. In: Beachey E.H. (ed.), Bacterial Adherence. Chapman and Hall, New York, pp. 184–217.Google Scholar
  53. Eisenstein, B.I. 1981. Phase variation of type 1 fimbriae in Escherichia coli is under transcriptional control. Science 214: 337–337.PubMedGoogle Scholar
  54. Eisenstein, B.I. and D.C. Dodd. 1982. Pseudocatabolite repression of type 1 fimbriae of Escherichia coli. J. Bacteriol. 151: 1560–1567.Google Scholar
  55. Eisenstein, B., I. Ofek, and E.H. Beachey. 1981. Loss of lectin-like activity in aberrant type 1 fimbriae of Escherichia coli. Infect. Immun. 31: 792–797.Google Scholar
  56. Fachon-Kalweit, S., B.L. Elder, and P. Fives-Taylor. 1985. Antibodies that bind to fimbriae block adhesion of Streptococcus sanguis to saliva-coated hydroxyapatite. Infect. Immun. 48: 617–624.PubMedGoogle Scholar
  57. Fein, J.E. 1981. Screening of uropathogenic Escherichia coli for expression of mannosesensitive adhesins: importance of culture conditions. J. Clin. Microbiol. 13: 1088–1095.PubMedGoogle Scholar
  58. Ferreiros, C.M. and M.T. Criado. 1983. Different expression and genetic control for the K99 antigen and its associated adhesin. Curr. Microbiol. 8: 221–224.Google Scholar
  59. Finkelstein, R.A. and L.F. Hanne. 1982. Purification and characterization of the soluble hemagglutinin (cholera lectin) produced by Vibrio cholerae. Infect. Immun. 36: 1199–1208.Google Scholar
  60. Finlay, B.B., F. Heffron, and S. Falkow. 1989. Epithelial cell surfaces induce Salmonella proteins required for bacterial adherence and invasion. Science 243: 940–943.PubMedGoogle Scholar
  61. Firon, N., D. Duksin, and N. Sharon. 1985. Mannose-specific adherence of Escherichia coli to BHK cells that differ in their glycosylation patterns. FEMS Microbiol. Lett. 27: 161–165.Google Scholar
  62. Firon, N., S. Ashkenazi, D. Mirelman, I Ofek, and N. Sharon. 1987. Aromatic a-glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated Escherichia coli to yeast and intestinal epithelial cells. Infect. Immun. 55: 472–476.PubMedGoogle Scholar
  63. Fives-Taylor, P.M. and D.W. Thompson. 1985. Surface properties of Streptococcus sanguis FW213 mutants nonadherent of saliva-coated hydroxyapatite. Infect. Immun. 47: 752–759.PubMedGoogle Scholar
  64. Fletcher, M. 1985. Effect of solid surfaces on the activity of attached bacteria. In: Savage, D.C. and M. Fletcher (eds), Bacterial Adhesion. Plenum Press, New York, pp. 339–362.Google Scholar
  65. Forestier, C., A. Darfeuille-Michaud, and B. Joly. 1984. Effect of antibiotics on adhesion of enterotoxigenic Escherichia coli strains. Eur. J. Clin. Microbiol. 3: 427–432.PubMedGoogle Scholar
  66. Freter, R. 1988. Mechanisms of bacterial colonization of the mucosal surfaces of the gut. In: Roth, J.A. (ed.), Virulence Mechanisms of Bacterial Pathogens. American Society for Microbiology, Washington, pp. 45–60.Google Scholar
  67. Freter, R. and P.C. M. O’Brien. 1981. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vivo studies. Infect. Immun. 34: 234–240.PubMedGoogle Scholar
  68. Gander, R.M. and V.L. Thomas. 1987. Distribution of type 1 and p pili on uropathogenic Escherichia coli 06. Infect. Immun. 55: 293–297.PubMedGoogle Scholar
  69. Garber, N., N. Sharon, D. Shohet, J.S. Lam, and R.J. Doyle. 1985. Contribution of hydrophobicity to hemagglutination reactions of Pseudomonas aeruginosa. Infect. Immun. 50: 336–337.Google Scholar
  70. Germaine, G.R. and C.F. Schachtele. 1976. Streptococcus mutans dextransucrase: mode of interaction with high-molecular-weight dextran and role in cellular aggregation. Infect. Immun. 13: 365–372.Google Scholar
  71. Gibbons, R.J. and J. Dankers. 1983. Association of food lectins with human oral epithelial cells in vivo. Arch. Oral Biol. 28: 561–566.Google Scholar
  72. Gibbons, R.J., E.C. Moreno, and I. Etherden. 1983. Concentration-dependent multiple binding sites on saliva-treated hydroxyapatite for Streptococcus sanguis. Infect. Immun. 39: 280–289.Google Scholar
  73. Goldhar, J., R. Perry, and I. Ofek. 1984. Extraction and properties of nonfimbrial mannose-resistant hemagglutinin from a urinary isolate of Escherichia coli. Curr. Microbiol. 11: 49–54.Google Scholar
  74. Goldhar, J., A. Zilberberg, and I. Ofek. 1986. Infant mouse model of adherence and colonization of intestinal tissues by enterotoxigenic strains of Escherichia coli isolated from humans. Infect. Immun. 52: 205–208.PubMedGoogle Scholar
  75. Gunnarsson, A., P.A. Mardh, A. Lundblad, and S. Svensson. 1984. Oligosaccharide structures mediating agglutination of sheep erythrocytes by Staphylococcus saprophyticus. Infect. Immun. 45: 41–46.Google Scholar
  76. Haahtela, K., E. Tarkka, and T.K. Korhonen. 1985. Type 1 fimbria-mediated adhesion of enteric bacteria to grass roots. Appl. Environ. Microbiol. 49: 1182–1185.PubMedGoogle Scholar
  77. Hacker, J. 1990. Genetic determinants coding for fimbriae and adhesins of extraintestinal Escherichia coli. Curr. Top. Microbiol. Immunol. 151: 1–27.Google Scholar
  78. Hammani, A., L. Aqueda, M. Archambaud, N. Marty, L. Lapchine, and G. Chabonon. 1987. Effects of sub-inhibitory concentrations of oxolinic acid on both hemagglutinating activity and adhesion to uroepithelia cells by E. coli strains isolated from urine: an in vitro study. Path. Biol. 35: 545–550.Google Scholar
  79. Harper, M., A. Turvey, and A.J. Bramley. 1978. Adhesion of fimbriate Escherichia coli to bovine mammary-gland epithelial cell in vitro. J. Med. Microbiol. 11: 117–123.Google Scholar
  80. Hasty, D., I. Ofek, H.S. Courtney, and R.J. Doyle. 1992. Multiple adhesins of streptococci. Infect. Immun. 60: 2147–2152.PubMedGoogle Scholar
  81. Hattori, R. and T. Hattori. 1963. Effect of a liquid-solid interface on the life of microorganisms. Ecol. Dev. 16: 64–70.Google Scholar
  82. Hattori, R. and T. Hattori. 1981. Growth rate and molar growth yield of Escherichia coli absorbed on an anion-exchange resin. J. Gen. Appl. Microbiol. 27: 287–298.Google Scholar
  83. Hazlett, L.O., M. Moon, and R.S. Berk. 1986. In vivo identification of sialic acid as the ocular receptor for Pseudomonas aeruginosa. Infect. Immun. 51: 687–689.PubMedGoogle Scholar
  84. Hazlett, L.O., M.M. Moon, M. Strejc, and R.S. Berk. 1987. Evidence forN-acetylmannosamine as an ocular receptor for P. aeruginosa adherence to scarified cornea. Invest. Ophthalmol. Vis. Sci. 28: 1978–1985.PubMedGoogle Scholar
  85. Herzberg, M., K. Gong, G.D. MacFarlane, P.R. Erickson, A.H. Soberay, P.H. Krebsbach, G. Manjula, K. Schilling, and W.H. Bowen. 1990. Phenotypic characterization of Streptococcus sanguis virulence factors associated with bacterial endocarditis. Infect. Immun. 58: 515–522.PubMedGoogle Scholar
  86. Hogg, S.D. and G. Embery. 1982. Blood-group reactive glycoprotein from human saliva interacts with lipoteichoic acid on the surface of Streptococcus sanguis cells. Arch. Oral Biol. 27: 261–268.PubMedGoogle Scholar
  87. Hogt, A.H., J. Dankert, and J. Feijen. 1983. Encapsulation, slime production and surface hydrophobicity of coagulase-negative staphylococci. FEMS Microbiol. 18: 211–215.Google Scholar
  88. Holderbaum, D., R.A. Spech, and L.A. Ehrhart. 1985. Specific binding of collagen to Staphylococcus aureus. Collagen Rel. Res. 5: 261–271.Google Scholar
  89. Honda, T., M. Arita, and T. Miwatani. 1984. Characterization of new hydrophobic pili of human enterotoxigenic Escherichia coli: a possible new colonization factor. Infect. Immun. 43: 959–965.PubMedGoogle Scholar
  90. Hultgren, S.J., W.R. Schwan, A.J. Schaeffer, and J.L. Duncan. 1986. Regulation of production of type 1 pili among urinary tract isolates of Escherichia coli. Infect. Immun. 54: 613–620.Google Scholar
  91. Humphrey, B., S. Kjelleberg, and K.C. Marshall. 1983. Responses on marine bacteria under starvation conditions at a solid-water interface. Appl. Environ. Microbiol. 45: 43–47.PubMedGoogle Scholar
  92. Isaacson, R.E., P.C. Fusco, C.C. Brinton, and H.W. Moon. 1978. In vitro adhesion of Escherichia coli to porcine small intestinal epithelial cells: pili as an adhesive factor. Infect. Immun. 21: 392–397.PubMedGoogle Scholar
  93. Isberg, R.R. and S. Falkow. 1985. A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature 317: 262–264.PubMedGoogle Scholar
  94. Isberg, R.R., D.L. Voorhis, and S. Falkow. 1987. Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell 50: 769–778.PubMedGoogle Scholar
  95. Israele, V., A. Darabi, and G.H. McCracken, Jr. 1987. The role of bacterial virulence factors and Tamm-Horsfall protein in the pathogenesis of Escherichia coli urinary tract infection in infants. Am. J. Dis. Child. 141: 1230–1234.PubMedGoogle Scholar
  96. Jannasch, H.W. and P.H. Pritchard. 1972. The role of inert particulate matter in the activity of aquatic microorganisms, Mem. Ist Italian Idrobiol. 29 (Suppl): 289–308.Google Scholar
  97. Javorsky, P., E. Rybosova, I. Havassy, K. Horsky, and V. Kmet. 1987. Urease activity of adherent bacteria and rumen fluid bacteria. Physiol. Bohemosl. 36: 75–81.Google Scholar
  98. Karch, H.K., J. Heesemann, R. Laufs, A.D. O’Brien, C.O. Tacket, and M.M. Levine. 1987. A plasmid of enterohemorrhagic Escherichia coli 0157:H7 is required for expression of a new fimbrial antigen and for adhesion to epithelial cells. Infect. Immun. 55: 455–461.PubMedGoogle Scholar
  99. Kishimoto, E., D.I. Hay, and R.J. Gibbons. 1989. A human salivary protein which promotes adhesion of Streptococcus mutans serotype C strains to hydroxylapatite. Infect. Immun. 57: 3702–3707.PubMedGoogle Scholar
  100. Klotz, S.A. and R.L. Penn. 1987. Multiple mechanisms may contribute to the adherence of Candida yeasts to living cells. Curr. Microbiol. 16: 119–122.Google Scholar
  101. Knutton, S., D.R. Lloyd, and A.S. McNeish. 1987. Identification of a new fimbrial structure in enterotoxigenic Escherichia coli (ETEC) serotype 0148: H28 which adheres to human intestinal mucosa: a potentially new human ETEC colonization factor. Infect. Immun. 55: 86–92.PubMedGoogle Scholar
  102. Kolenbrander, P.E. 1982. Isolation and characterization of coaggregation defective mutants of Actinomyces viscosus, Actinomyces naeslundii and Streptococcus sanguis. Infect. Immun. 37: 1200–1208.PubMedGoogle Scholar
  103. Kolenbrander, P.E. 1989. Surface recognition among oral bacteria: multigeneric coaggregations and their mediators. CRC Crit. Rev. Microbiol. 17: 137–159.Google Scholar
  104. Korhonen, T.K., E. Tarkka, H. Ranta, and K. Haahtela. 1983. Type 3 fimbriae of Klebsiella sp.: molecular characterization and role in bacterial adhesion to plant roots. J. Bacteriol. 155: 860–865.PubMedGoogle Scholar
  105. Kristiansen, B.E., L. Rustad, O. Spanne, and B. Bjorvatin. 1983. Effect of subminimal inhibitory concentrations of antimicrobial agents on the piliation and adherence of Neisseria meningitidis. Antimicrob. Agents Chemother. 24: 731–734.Google Scholar
  106. Krivan, H.C., V. Ginsburg, and D.D. Roberts. 1988. Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialo GM1) and gangliotrioasylceramide (asialoGM2). Arch. Biochem. Biophys. 260: 493–496.PubMedGoogle Scholar
  107. Kuriyama, S.M. and F.J. Silverblatt. 1986. Effect of Tamm-Horsfall urinary glycoprotein on phagocytosis and killing of type-1 fimbriated Escherichia coli. Infect. Immun. 51: 193–198.Google Scholar
  108. Lambden, P.R., J.E. Heckels, L.T. James, and P.J. Watt. 1979. Variations in surface protein composition associated with virulence properties in opacity types of Neisseria gonorrhoeae. J. Gen. Microbiol. 114: 305–312.Google Scholar
  109. Leffler, H. and C. Svanborg-Eden. 1981. Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells. Infect. Immun. 34: 920–929.PubMedGoogle Scholar
  110. Leffler, H., and C. Svanborg-Eden. 1986. Glycolipids as receptors for Escherichia coli, lectins or adhesins. In: Mirelman, D. (ed.), Microbial Lectins and Agglutinins. John Wiley & Sons, New York, pp. 83–111.Google Scholar
  111. Levine, M.J., M.C. Herzberg, M.S. Levine, S.A. Ellison, M.W. Stinson, H.C. Li, and T. Van Dyke. 1978. Specificity of salivary-bacterial interactions: role of terminal sialic acid residues in the interaction of salivary glycoproteins with Streptococcus sanguis and Streptococcus mutans. Infect. Immun. 19: 107–115.Google Scholar
  112. Levine, M.M., D. Herrington, J.R. Murphy, J.G. Morris, G. Losonsky, B. Tall, A.A. Lindberg, S. Svenson, S. Bagar, M.F. Edwards, and B. Stocker. 1987. Safety, infectivity, immunogenicity and in vivo stability of two attenuated auxotrophic mutant strains of Salmonella typhi, 541ty and 543ty as live oral vaccines in humans. J. Clin. Invest. 79: 888–902.PubMedGoogle Scholar
  113. Lianou, P.E., H.P. Bassaris, E.G. Votta, and J.T. Pappvassiliou. 1985. Interaction of subminimal inhibitory concentrations of clindamycin and gram-negative aerobic organisms: effects on adhesion and polymorphonuclear leukocyte function. J. Antimicrob. Chemother. 15: 481–487.PubMedGoogle Scholar
  114. Liener, I.E. 1986. Nutritional significance of lectins in the diet. In: Liener, I.E., N. Sharon, and I.J. Goldstein (eds.), The Lectins: Properties, Functions, and Applications in Biology and Medicine. Academic Press, Orlando, pp. 527–552.Google Scholar
  115. Lillard, H.S. 1986. Role of fimbriae and flagella in the attachment of Salmonella typhimurium to poultry skin. J. Food Sci. 51: 54–56.Google Scholar
  116. Linder, H., I. Engberg, I.M. Baltzer, K. Jann, and C. Svanborg-Eden. 1988. Induction of inflammation by Escherichia coli on the mucosal level: requirement for adherence and endotoxin. Infect. Immun. 56: 1309–1313.PubMedGoogle Scholar
  117. Lindquist, B.L., E. Lebenthal, P.C. Lee, M.W. Stinson, and J.M. Merrick. 1987. Adherence of Salmonella typhimurium to small intestinal enterocytes of the rat. Infect. Immun. 55: 3044–3050.PubMedGoogle Scholar
  118. Lis, H. and N. Sharon. 1986. Applications of Lectins. In: Liener, I.E., N. Sharon, and I.J. Goldstein (eds.), The Lectins, Properties, Function and Applications in Biology and Medicine. Academic Press, Orlando, pp. 294–374.Google Scholar
  119. Little, B.J., P.A. Wagner, W.G. Characklis, and W. Lee. 1990. Microbial corrosion. In: Characklis, W.G. and K.C. Marshall (eds.), Biofilms. John Wiley & Sons, New York, pp. 635–670.Google Scholar
  120. Lowy, F.D., S.D. Chang, E.G. Neuhaus, D.S. Horne, A. Tomasz, and N.H. Steigbigel. 1983. Effect of penicillin on the adherence of Streptococcus sanguis in vitro and in the rabbit model of endocarditis. J. Clin. Invest. 71: 668–675.PubMedGoogle Scholar
  121. Maayan, M.C., I. Ofek, O. Medalia, and M. Aronson. 1985. Population shift in mannosespecific fimbriated phase of Klebsiella pneumoniae during experimental urinary tract infection in mice. Infect. Immun. 49: 785–789.PubMedGoogle Scholar
  122. Madison, B., E.H. Beachey, and S.N. Abraham 1989. Protection against E. coli induced urinary tract infection (UTI) with antibodies directed at the Fim H protein of type 1 fimbriae. Abstracts, Annual Meeting, American Society for Microbiology, p. 38.Google Scholar
  123. Mans, C.F., G. Schoolnik, J.M. Koomey, J. Hardy, J. Rothbard, and S. Falkow. 1985. Cloning and sequencing of a Moraxella bovis pilin gene. J. Bacteriol. 163: 132–139.Google Scholar
  124. Mans, C.F., W.W. Ruehl, G.K. Schoolnik, and S. Falkow. 1988. Pilin gene phase variation of Moraxella bovis is caused by an inversion of the pilin genes. J. Bacteriol. 170: 3032–3039.Google Scholar
  125. Marshall, K.C. 1986. Adsorption and adhesion processes in microbial growth at interfaces. Adv. Colloid Interface Sci. 25: 59–86.PubMedGoogle Scholar
  126. Mascellino, M.T., S. Catania, M.L. De Vito, and C. DeBac. Erythromycin, miocamycin and clindamycin towards adhesivity and phagocytosis of gram-positive bacteria. Microbiologia 11: 231–241.Google Scholar
  127. Mattingly, S.J. and B.P. Johnston. 1987. Comparative analysis of the localization of lipoteichoic acid in Streptococcus agalactiae and Streptococcus pyogenes. Infect. Immun. 55: 2383–2386.Google Scholar
  128. Maxe, I., C. Ryden, T. Wadström, and K. Rubin. 1986. Specific attachment of Staphylococcus aureus to immobilized fibronectin. Infect. Immun. 54: 695–704.PubMedGoogle Scholar
  129. McBride, B.C., M. Song, B. Krasse, and J. Olsson. 1984. Biochemical and immunological differences between hydrophobic and hydrophilic strains of Streptococcus mutans. Infect. Immun. 44: 68–75.Google Scholar
  130. McIntire, F.C., L.K. Crosby, J.J. Barlow, and K.L. Matta. 1983. Structural preferences of /3 galactoside-reactive lectins on Actinomyces viscosus T14V and Actinomyces naeslundii. Infect. Immun. 41: 848–850.Google Scholar
  131. Melhem, R.A. and P.T. Loverde. 1984. Mechanism of interaction of Salmonella and Schistosoma species. Infect. Immun. 44: 274–281.PubMedGoogle Scholar
  132. Minion, F.C., G.H. Cassell, S. Pnini, and I. Kahane. 1984. Multiphasic interactions of Mycoplasma pulmonis with erythrocytes defined by adherence and hemagglutination. Infect. Immun. 44: 394–400.PubMedGoogle Scholar
  133. Mirelman, D. 1987. Ameba-bacterium relationship in amebiasis. Microbiol. Rev. 51: 27 2284.Google Scholar
  134. Mirelman, D. and I. Ofek. 1986. Introduction to microbial lectins and agglutinins. In: Mirelman, D. (ed.), Microbial Lectins and Agglutinins. John Wiley & Sons, New York, pp. 1–19.Google Scholar
  135. Miyake, Y., A. Kohada, I. Fujii, M. Sugai, and H. Suginaka. 1989. Aminoglycosides enhance the adherence of Staphylococcus aureus to HeLa cells. J. Antimicrob. Chemother. 23: 79–86.PubMedGoogle Scholar
  136. Moen, D.V. 1962. Observation on the effectiveness of cranberry juice in urinary infections. Wis. Med. J. 61: 282–283.PubMedGoogle Scholar
  137. Morris, E.J. and B.C. McBride. 1984. Adherence of Streptococcus sanguis to saliva- coated hydroxyapatite: evidence for two binding sites. Infect. Immun. 43: 656–663.PubMedGoogle Scholar
  138. Morris, E.J., N. Ganeshkumar, and B.C. McBride. 1985. Cell surface components of Streptococcus sanguis: relationship to aggregation, adherence, and hydrophobicity. J. Bacteriol. 164: 255–262.PubMedGoogle Scholar
  139. Murray, P.A., M.J. Levine, L.A. Tabak, and M.S. Reddy. 1982. Specificity of salivary-bacterial interactions: II. Evidence for a lectin on Streptococcus sanguis with specificity for a NeuAca2,3Galj31,3GalNAc sequence. Biochem. Biophy. Res. Commun. 106: 390–396.Google Scholar
  140. Nalbandian, J., M.L. Freedman, J.M. Tanzer, and S.M. Lovelace. 1974. Ultrastructure of mutants of Streptococcus mutans with reference to agglutination, adhesion and extracellular polysaccharide. Infect. Immun. 10: 1170–1179.PubMedGoogle Scholar
  141. Nesbitt, W.E., R.J. Doyle, K.G. Taylor, R. Staat, and R.R. Arnold. 1982a. Positive cooperativity in the binding of Streptococcus sanguis to hydroxylapatite. Infect. Immun. 35: 157–165.PubMedGoogle Scholar
  142. Nesbitt, W.E. K.G. Taylor, and R.J. Doyle. 1982b. Hydrophobic interactions and the adherence of Streptococcus sanguis to hydroxylapatite. Infect. Immun. 38: 637–644.PubMedGoogle Scholar
  143. Nevola, J.J., D.C. Laux, and P.S. Cohen. 1987. In vivo colonization of the mouse large intestine and in vitro penetration of intestinal mucus by an avirulent smooth strain of Salmonella typhimurium and its lipopolysaccharide. Infect. Immun. 55: 2884–2890.PubMedGoogle Scholar
  144. Nickel, J.C., I. Ruseska, J.B. Wright, and J.W. Costerton. 1985. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob. Agents Chemother. 27: 619–624.PubMedGoogle Scholar
  145. Nishikawa, Y. and T. Baba. 1985. In vitro adherence of Escherichia coli to endometrial epithelial cells of rats and influence of estradiol. Infect. Immun. 50: 506–509.PubMedGoogle Scholar
  146. Nowicki, B., M. Rhen, V. Vaisanen-Rhen, A. Pere, and T.K. Korhonen. 1984. Immunofluorescence study of fimbrial phase variation in Escherichia coli. KS71. J. Bacteriol. 160: 691–695.PubMedGoogle Scholar
  147. Nowicki, B., M. Rhen, V. Vaisanen-Rhen, A. Pere, and T.K. Korhonen. 1985a. Fractionation of a bacterial cell population by adsorption to erythrocytes and yeast cells. FEMS Microbiol. Lett. 26: 35–40.Google Scholar
  148. Nowicki, B., H. Holthofer, T. Saraneva, M. Rhen, V. Vaisenen-Rhen, and T.K. Korhonen. 1985b. Location of adhesion sites for P-fimbriated and for 075X-positive Escherichia coli in the human kidney. Microb. Pathogen. 1: 169–180.Google Scholar
  149. Nowicki, B., J. Vuopio-Varkila, P. Viljanen, T.K. Korhonen, and P.H. Makela. 1986. Fimbrial phase variation and systemic E. coli infection studied in the mouse peritonitis model. Microb. Pathogen. 1: 335–347.Google Scholar
  150. Ofek, I. and E.H. Beachey. 1978. Mannose binding and epithelial cell adherence of Escherichia coli. Infect. Immun. 22: 247–254.Google Scholar
  151. Ofek, I. and E.H. Beachey. 1980. Bacterial adherence. Adv. Int. Med. 25: 505–532.Google Scholar
  152. Ofek, I., E.H. Beachey, B.I. Eisenstein, M.L. Alkan, and N. Sharon. 1979. Suppression of bacterial adherence by subminimal inhibitory concentrations of beta-lactam and aminoglycoside antibiotics. Rev. Infect. Dis. 1: 832–837.PubMedGoogle Scholar
  153. Ofek, I., J. Goldhar, Y. Eshdat, and N. Sharon. 1982. The importance of mannose specific adhesins (lectins) in infections caused by Escherichia coli. Scand. J. Infect. Dis. Suppl. 33: 61–67.Google Scholar
  154. Ofek, I., S. Cohen, and R. Rachmani. 1989. Influence of antibiotics on adhesion of bacteria. J. Chemother. (Suppl. 4 ). 1: 6.Google Scholar
  155. Ofek, I., D. Zafriri, J. Goldhar, and B.I. Eisenstein. 1990. Inability of toxin inhibitors to neutralize enhanced toxicity caused by bacteria adherent to tissue culture cells. Infect. Immun. 58: 3737–3742.PubMedGoogle Scholar
  156. Ofek, I., J. Goldhar, D. Zafriri, H. Lis, R. Adar, and N. Sharon. 1991. Anti-adhesin activity in cranberry and blueberry juices. N. Engl. J. Med. 324: 1599.PubMedGoogle Scholar
  157. Old, D.C. 1972. Inhibition of the interaction between fimbrial hemagglutinins and erythrocytes by D-mannose and other carbohydrates. J. Gen. Microbiol. 71: 149–157.PubMedGoogle Scholar
  158. Old, D.C. and R.A. Adegbola. 1983. A new mannose-resistant hemagglutinin in Klebsiella. J. Appl. Bacteriol. 55: 165–172.Google Scholar
  159. Orskov, I., A. Ferencz, and P. Orskov. 1980. Tamm-Horsfall protein or uromucoid is the normal urinary slime that traps type 1 fimbriated Escherichia coli. Lancet 1: 887.Google Scholar
  160. Papas, P.N., C.A. Brusch, and G.C. Ceresia. 1968. Cranberry juice in the treatment of urinary tract infections. Southwest Med. J. 47: 17–20.Google Scholar
  161. Parkkinen, J., R. Virkola, and T.K. Korhonen. 1988. Identification of factors in human urine that inhibit the binding of Escherichia coli adhesins. Infect. Immun. 56: 2623–2630.PubMedGoogle Scholar
  162. Parry, S.H., S. Boonchai, S.N. Abraham, J.M. Salter, D.M. Rooke, J.M. Simpson, A.J. Bint, and M. Sussman. 1983. A comparative study of the mannose-resistant and mannose-sensitive hemagglutination of Escherichia coli isolated from urinary tract infections. Infection 11: 123–128.PubMedGoogle Scholar
  163. Paul, J.H. 1984. Effects of antimetabolites on the adhesion of estuarine Vibrio sp. to polystyrene. Appl. Environ. Microbiol. 48: 924–929.PubMedGoogle Scholar
  164. Pearl, H.W. 1985. Influence of attachment on microbial metabolism and growth in aquatic ecosystems. In: Savage, D.C. and M. Fletcher (eds.), Bacterial Adhesion: Mechanisms and Physiological Significance. Plenum Press, New York, pp. 363–400.Google Scholar
  165. Pere, A., B. Nowicki, H. Saxen, A. Siitonen, and T.K. Korhonen. 1987. Expression of P, type-and type 1C fimbriae of Escherichia coli in the urine of patients with acute urinary tract infection. J. Infect. Dis. 156: 567–574.PubMedGoogle Scholar
  166. Peros, W.J. and R.J. Gibbons. 1982. Influence of sublethal antibiotic concentrations on bacterial adherence to saliva-treated hydroxyapatite. Infect. Immun. 35: 326–334.PubMedGoogle Scholar
  167. Ponniah, S., S.N. Abraham, M.E. Dockter, C.D. Wall, and R.D. Endres. 1989. Mitogenic stimulation of human lymphocytes by the mannose-specific adhesin on Escherichia coli type 1 fimbriae. J. Immunol. 142: 992–998.PubMedGoogle Scholar
  168. Proctor, R.A., P.J. Olbrantz, and D.F. Mosher. 1983. Subinhibitory concentrations of antibiotics alter fibronectin binding to Staphylococcus aureus. Antimicrob. Agents Chemother. 24: 823–826.PubMedGoogle Scholar
  169. Ramphal, R. and G.B. Pier. 1985. Role of Pseudomonas aeruginosa mucoid exopolysaccharide in adherence to tracheal cells. Infect. Immun. 47: 1–4.PubMedGoogle Scholar
  170. Rhen, M., P. Klemm, and T.K. Korhonen. 1986. Identification of two new hemagglutinins of Escherichia coli, N-acetyl-D-glucosamine-specific fimbriae and a blood group M-specific agglutinin, by cloning the corresponding genes in Escherichia coli K-12. J. Bacteriol. 168: 1234–1242.PubMedGoogle Scholar
  171. Rosenberg, M. 1984. Isolation of pigmented and nonpigmented mutants of Serratia marcescens with reduced cell surface hydrophobicity. J. Bacteriol. 160: 480–482.PubMedGoogle Scholar
  172. Ruoslahti, E. and M.D. Pierschbacher. 1987. New perspectives in cell adhesion: RGD and integrins. Science 238: 491–497.PubMedGoogle Scholar
  173. Salit, I.E. 1983. Effect of subinhibitory concentrations of antimicrobials on meningococcal adherence. Can. J. Microbiol. 29: 369–376.PubMedGoogle Scholar
  174. Salit, I.E. and E.C. Gotschlich. 1977. Hemagglutination by purified type 1 Escherichia coli pili. J. Exp. Med. 146: 1169–1181.PubMedGoogle Scholar
  175. Sandberg, T., K. Stenqvist, and C. Svanborg-Eden. 1979. Effects of subminimal inhibitory concentrations of ampicillin, chloramphenicol, and nitrofurantoin on the attachment of Escherichia coli to human uroepithelial cells in vitro. Rev. Infect. Dis. 1: 838–844.Google Scholar
  176. Schadow, K.H., W.A. Simpson, and G.D. Christensen. 1988. Characteristics of adherence to plastic tissue culture plates of coagulase-negative staphylococci exposed to subinhibitory concentrations of antimicrobial agents. J. Infect. Dis. 157: 71–77.PubMedGoogle Scholar
  177. Schaeffer, A.J., S.K. Amundsen, and L.N. Schmidt. 1979. Adherence of Escherichia coli to human urinary tract epithelial cells. Infect. Immun. 24: 753–759.PubMedGoogle Scholar
  178. Schaeffer, A.J., W.R. Schwan, S.J. Hultgren, and J.L. Duncan. 1987. Relationship of type 1 pilus expression in Escherichia coli to ascending urinary tract infections in mice. Infect. Immun. 55: 373–380.PubMedGoogle Scholar
  179. Scheid, W.M., O. Zak, K. Vosbeck, and M.A. Sande. 1981. Bacterial adhesion in the pathogenesis of infective endocarditis: effect of subinhibitory antibiotic concentrations on streptococcal adhesion in vitro and the development of endocarditis in rabbits. J. Clin. Invest. 68: 1381–1384.Google Scholar
  180. Schifferli, D.M. and E.H. Beachey. 1988a. Bacterial adhesion: modulation by antibiotics which perturb protein synthesis. Antimicrob. Agents Chemother. 32: 1603–1608.PubMedGoogle Scholar
  181. Schifferli, D.M. and E.H. Beachey. 1988b. Bacterial adhesion: Modulation by antibiotics with primary targets other than protein synthesis. Antimicrob. Agents Chemother. 32: 1609–1613.PubMedGoogle Scholar
  182. Schmidt, D.R. and A.E. Sobota. 1988. An examination of the anti-adherence activity of cranberry juice on urinary and nonurinary bacterial isolates. Microbios 55: 173–181.PubMedGoogle Scholar
  183. Sharon, N. and I. Ofek. 1986. Bacterial surface lectins specific for mannose. In: Mirelman, D. (ed.), Microbial Lectins and Agglutinins. John Wiley & Sons, New York, pp. 55–81.Google Scholar
  184. Shaw, J.H. and S. Falkow. 1988. Model for invasion of human tissue culture cells by Neisseria gonorrhoeae. Infect. Immun. 56: 1625–1632.Google Scholar
  185. Sherman, P.M. and E.C. Boedeker. 1987. Pilus-mediated interactions of the Escherichia coli strain RDEC-1 with mucosal glycoproteins in the small intestine of rabbits. Gastroenterology 93: 734–743.PubMedGoogle Scholar
  186. Sheth, N.K., T.R. Franson, and P.G. Sohnle. 1985. Influence of bacterial adherence to intravascular catheters on in vitro antibiotic susceptibility. Lancet 2: 1266–1268.PubMedGoogle Scholar
  187. Shibl, A.M. 1985. Effect of antibiotics on adherence of microorganisms to epithelial cell surfaces. Rev. Infect. Dis. 7: 51–65.PubMedGoogle Scholar
  188. Simon, M., J. Zeig, M. Silverman, G. Mandel, and R. Doolittle. 1980. Phase variation: evolution of a controlling element. Science 209: 1370–1374.PubMedGoogle Scholar
  189. Simpson, W.A. and E.H. Beachey. 1983. Adherence to group A streptococci to fibronectin an oral epithelial cells. Infect. Immun. 39: 275–279.PubMedGoogle Scholar
  190. Simpson, W.A., I. Ofek, and E.H. Beachey. 1980. Binding of streptococcal lipoteichoic acid to the fatty acid binding sites on serum albumin. J. Biol. Chem. 255: 6092–6097.PubMedGoogle Scholar
  191. Simpson, W.A., H.S. Courtney, and I. Ofek. 1987. Interactions of fibronectin with streptococci: the role of fibronectin as a receptor for Streptococcus pyogenes. Rev. Infect. Dis. 9: S351 - S359.Google Scholar
  192. Sobota, A.E. 1984. Inhibition of bacterial adherence by cranberry juice: potential use for the treatment of urinary tract infection. J. Urol. 131: 1013–1016.PubMedGoogle Scholar
  193. Sogaard, H. and J.L. Larsen. 1983. The effect of antibiotics on mannose-resistant hemagglutination by K88-positive and K99-positive Escherichia coli strains. J. Vet. Pharm. Ther. 6: 187–193.Google Scholar
  194. Speziale, P., M. Hook, L. Switalski, and T. Wadström. 1984. Fibronectin binding to a Streptococcus pyogenes strain. J. Bacteriol. 157: 420–427.PubMedGoogle Scholar
  195. Speziale, P., M. Hook, L. Switalski, and T. Wadström. 1987. Binding of collagen to group A,B,C,D and G streptococci. FEMS Microbiol. Lett. 48: 47–51.Google Scholar
  196. Stengvist, K., T. Sandberg, S. Ahlstedt, T.K. Korhonen, and C. Svanborg-Eden. 1982. Effects of subinhibitory concentrations of antibiotics and antibodies on the adherence of Escherichia coli to human uroepithelial cells in vitro. Scand. J. Infect. Dis. Suppl. 33: 104–107.Google Scholar
  197. Stephens, D.S., J.W. Krebs, and Z. A. McGee. 1984. Loss of pili and decreased attachment to human cells by Neisseria meningitides and Neisseria gonorrhoeae exposed to subinhibitory concentrations of antibiotics. Infect. Immun. 46: 507–513.PubMedGoogle Scholar
  198. Sternlieb, P. 1963. Cranberry juice in renal disease. N. Engl. J. Med. 268: 57.Google Scholar
  199. Stibitz, S., A.A. Weiss, and S. Falkow. 1988. Genetic analysis of a region of the Bordetella pertussis chromosome encoding filamentous hemagglutinin and the pleiotropic regulatory locus vir. J. Bacteriol. 170: 2904–2913.Google Scholar
  200. Sun, D., S.N. Abraham, and E.H. Beachey. 1988a. Influence of berberine sulfate on synthesis and expression of Pap fimbrial adhesin in uropathogenic Escherichia coli. Antimicrob. Agents Chemother. 32: 1274–1277.Google Scholar
  201. Sun, D., H.S. Courtney, and E.H. Beachey. 1988b. Berberine sulfate blocks adherence of Streptococcus pyogenes to epithelial cells, fibronectin and hexadecane. Antimicrob. Agents Chemother. 32: 1370–1374.PubMedGoogle Scholar
  202. Sussman, M., S.N. Abraham, and S.H. Parry. 1983. Bacterial adhesion in the host-parasite relationship of urinary tract infection. In: Schulte-Wissermann, H. (ed.), Clinical, Bacteriological Immunologic Aspects of Urinary Tract Infection in Children. Thieme Stuttgart, pp. 103–112.Google Scholar
  203. Swaney, L.M., Y.P. Liu, C.M. To, K. Ippen-Ihler, and C.C. Brinton, Jr. 1977. Isolation and characterization of Escherichia coli phase variants and mutants deficient in type 1 pilus production. J. Bacteriol. 130: 495–505.PubMedGoogle Scholar
  204. Swanson, J. 1980. Adhesion and entry of bacteria into cells: Model of the pathogenesis of gonorrhea. In: Smith, H., J.J. Skehel, and M.J. Turner (eds.), The Molecular Basis of Microbial Pathogenecity, Dahlem Konferenzen: Verlag Chemi GMbh, Weinheim, pp. 17–40.Google Scholar
  205. Swanson, J. and O. Barrera. 1983. Gonococcal pilus subunit size heterogeneity correlates with transitions in colony piliation phenotype, not with changes in colony opacity. J. Exp. Med. 158: 1459–1472.PubMedGoogle Scholar
  206. Swanson, J. and J.M. Koomey. 1989. Mechanisms for variation of pili and outer membrane protein II in Neisseria gonorrhoeae. In: Berg, D.E. and M. Howe (eds.), Mobile DNA. American Society for Microbiology, Washington, pp. 743–761.Google Scholar
  207. Tacket, C.O., D.R. Maneval, and M.M. Levine. 1987. Purification, morphology, and genetics of a new fimbrial putative colonization factor of enterotoxigenic Escherichia coli 0159:H4. Infect. Immun. 55: 1063–1069.PubMedGoogle Scholar
  208. Tanaka, Y. 1982. Multiplication of fimbriate and nonfimbriate Salmonella typhimurium organisms in the intestinal mucosa of mice treated with antibiotics. Jap. J. Vet. Sci. 44: 523–527.Google Scholar
  209. Teti, G., G. Orefici, F. Thomasello, R. Trifrletti, C. Fava, S. Recchia, and P. Mastrolni. 1985. Role of lipoteichoic acid in the adherence of group B streptococci to vaginal epithelial cells. In: Kimura, Y., S. Kotami, and Y. Shiokawa (eds.), Recent Advances in Streptococci and Streptococcal Diseases. Reed Books, Berkshire, UK, pp. 94–96.Google Scholar
  210. Tylewska, S., S. Hjerten, and T. Wadström. 1981. Effect of subinhibitory concentrations of antibiotics on the adhesion of Streptococcus pyogenes to pharyngeal epithelial cells. Antimicrob. Agents Chemother. 20: 563–566.PubMedGoogle Scholar
  211. Tylewska, S.K., V.A. Fischetti, and R.J. Gibbons. 1988. Binding selectivity of Streptococcus pyogenes and M-protein to epithelial cells differs from that of lipoteichoic acid. Curr. Microbiol. 16: 209–216.Google Scholar
  212. Vaisanen, V., K. Lounatmaa, and T.K. Korhonen. 1982. Effects of sublethal concentrations of antimicrobial agents on the hemagglutination, adhesion, and ultrastructure of pyelonephritogenic Escherichia coli strains. Antimicrob. Agents Chemother. 22: 120127.Google Scholar
  213. Valentin-Weigand, P., J. Grulich-Henn, G.S. Chhatwal, G. Muller-Berghaus, H. Blobel, and K.T. Preissner. 1988. Mediation of adherence of streptococci to human endothelial cells by complement S protein (vitronectin). Infect. Immun. 56: 2851–2855.PubMedGoogle Scholar
  214. Vishwanath, S., C-M. Guay, and R. Ramphal. 1987. Effects of sublethal inhibitory concentrations of antibiotics on the adherence of Pseudomonas aeruginosa to tracheobronchial mucin. J. Antimicrob. Chemother. 19: 579–583.PubMedGoogle Scholar
  215. Vosbeck, K. 1982. In: Effects of low concentrations of antibiotics on Escherichia coli adhesion. In: Eickenberg, H.U., H. Hahn, and W. Opferkuch (eds.), The Influence of Antibiotics on the Host—Parasite Relationship. Springer-Verlag, Berlin and New York, pp. 183–193.Google Scholar
  216. Vosbeck, K., H. Handschin, E.B. Menge, and O. Zak. 1979. Effects of subminimal inhibitory concentrations of antibiotics on adhesiveness of Escherichia coli in vitro. Rev. Infect. Dis. 1: 845–851.Google Scholar
  217. Vosbeck, K., H. Mett, U. Huber, J. Bohn, and M. Petignat. 1982. Effects of low concentrations of antibiotics on Escherichia coli adhesion. Antimicrob. Agents Chemother. 21: 864–869.PubMedGoogle Scholar
  218. Wadström, T., P. Speziale, F. Rozgonyi, A. Ljungh, I. Maxe, and C. Ryden. 1987. Interactions of coagulase-negative staphylococci with fibronectin and collagen as possible first stage of tissue colonization in wounds and other tissue trauma. Zbl. Bakt. (Suppl. 16: 83–91.Google Scholar
  219. Weiss, A.A., and S. Falkow. 1984. Genetic analysis of phase change in Bordetella pertussis. Infect. Immun. 43: 263–264.Google Scholar
  220. Weiss, E.I., J. London, P.E. Kolenbrander, A.S. Kagermeier, and R.N. Andersen. 1987. Characterization of lectin-like surface components on Capnocytophage ochracea ATCC 33596 that mediate coaggregation with gram-positive oral bacteria. Infect. Immun. 55: 1198–1202.PubMedGoogle Scholar
  221. Wentworth, J.S. F.E. Austin, N. Garber, N. Gilboa-Garber, C.A. Paterson, and R.J. Doyle. 1991. Cytoplasmic lectins contribute to the adhesion of Pseudomonas aeruginosa. Biofouling 4: 99–104.Google Scholar
  222. Wicken, A.J. 1980. Structure and cell membrane-binding properties of bacterial lipoteichoic acids and their possible role in adhesion of streptococci to eukaryotic cells. In: Beachey E. (ed.), Bacterial Adherence. Chapman and Hall, London, pp. 139–158.Google Scholar
  223. Zafriri, D., Y. Oron, B.I. Eisenstein, and I. Ofek. 1987. Growth advantage and enhanced toxicity of Escherichia coli adherent to tissue culture cells due to restricted diffusion of products secreted by the cells. J. Clin. Invest. 79: 1210–1216.PubMedGoogle Scholar
  224. Zafriri, D., I. Ofek, R. Adar, M. Pocino, and N. Sharon. 1989. Inhibitory activity of cranberry juice on adherence of type 1 and type P fimbriated Escherichia coli to eukaryotic cells. Antimicrob. Agents Chemother. 33: 92–98.PubMedGoogle Scholar
  225. Zhang, X-h., M. Rosenberg, and R.J. Doyle. 1990. Inhibition of the cooperative adhesion of Streptococcus sanguis to hydroxylapatite. FEMS Microbiol. Lett. 71: 315–318.Google Scholar

Copyright information

© Chapman & Hall, Inc. 1994

Authors and Affiliations

  • Itzhak Ofek
    • 1
  • Ronald J. Doyle
    • 2
  1. 1.Tel-AvivIsrael
  2. 2.LouisvilleUSA

Personalised recommendations