Advertisement

In vitro synthesis of the iron-molybdenum cofactor and its analogs: Requirement of a non-nif gene product for the synthesis, and altered properties of dinitrogenase

  • Vinod K. Shah
  • Mark S. Madden
  • Paul W. Ludden

Abstract

Nitrogenase catalyzes the ATP- and reductant-dependent reduction of N2 to ammonia and the reduction of other substrates (i.e. acetylene, cyanide). In the absence of any reducible substrate, nitrogenase catalyzes the reduction of protons to H2. Nitrogenase consists of two proteins, dinitrogenase (MoFe protein, component I) and dinitrogenase reductase (Fe protein, component II) (1,5). Dinitrogenase reductase donates electrons one at a time to dinitrogenase with the concomitant hydrolysis of ATP. Electrons passed to dinitrogenase are channelled to a unique prosthetic group called the iron-molybdenum cofactor (FeMo-co) which is composed of Fe, Mo, S, (27) and homocitrate (10). FeMo-co has been proposed as the site for substrate reduction (6, 28). In Klebsiella pneumoniae, at least six nif (nitrogen fixation) gene products (NIF Q, NIF B, NIF V, NIF N, NIF E, and dinitrogenase reductase) are involved in the synthesis of active FeMo-co. The NIF Q is required for early steps in the processing of Mo for FeMo-co biosynthesis (11). Mutations in nif B, nif N, or nif E result in formation of an apo-dinitrogenase (lacking FeMo-co), that can be activated in vitro with purified FeMo-co (24,27,31). Certain strains of K. pneumoniae and Azotobacter vinelandii with mutations in nif H (the structural gene for dinitrogenase reductase) fail to synthesize FeMo-co (4,25).

Keywords

Nitrogen Fixation Hydroxy Group Racemic Mixture Carboxy Group ENDOR Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bulen, W.A. & LeComte, J.R. (1966) Proc. Natl. Acad. Sci. U.S.A. 56, 979–986.CrossRefGoogle Scholar
  2. 2.
    Downs, D.M., Ludden, P.W., & Shah, V.K. (1990). J.Bacteriol. (submitted).Google Scholar
  3. 3.
    Eidness, M.K., Flank, A.M., Smith, B.E., Flood, A.C., Garner, C.D., & Cramer, S.P. (1986). J. Am. Chem. Soc. 108, 2746–2747.CrossRefGoogle Scholar
  4. 4.
    Filler, W.A., Kemp, R.M., Ng, J.C., Hawkes, T.R., Dixon, R.A., & Smith, B.E. (1986) Eur. J. Biochem., 160, 371–377.CrossRefGoogle Scholar
  5. 5.
    Hageman, R.V. & Burris, R.H. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 2699–2702.CrossRefGoogle Scholar
  6. 6.
    Hawkes, T.R., McLean, P.A., & Smith, B.E. (1984) Biochem. J. 217, 317–321.Google Scholar
  7. 7.
    Hoover, T.R., Shah, V.K., Roberts, G.P., & Ludden, P.W. (1986) J.Bacteriol. 167, 999–1003.Google Scholar
  8. 8.
    Hoover, T.R., Robertson, A.D., Cerny, R.L., Hayes, R.N., Imperial, J., Shah, V.K. & Ludden, P.W. (1987) Nature (London) 329, 855–857.CrossRefGoogle Scholar
  9. 9.
    Hoover, T.R., Imperial, J., Liang, J., Ludden, P.W. & Shah, V.K. (1988) Biochemistry 27, 3647–3652.CrossRefGoogle Scholar
  10. 10.
    Hoover, T.R., Imperial, J., Ludden, P.W. & Shah, V.K. (1989) Biochemistry, 28, 2768–2771.CrossRefGoogle Scholar
  11. 11.
    Imperial, J., Ugalde, R.A., Shah, V.K., & Brill, W.J. (1984) J. Bacteriol., 158, 187–194.Google Scholar
  12. 12.
    Imperial, J., Shah, V.K., Hoover, T.R., & Ludden, P.W. (1988) in Nitrogen Fixation: Hundred Years After, (Bothe, H., de Bruijn, F.J., & Newton, W.E., Eds.) p. 128, Gustav Fischer Verlag, Stuttgart, New York.Google Scholar
  13. 13.
    Imperial, J., Hoover, T.R., Madden, M.S., Ludden, P.W., & Shah, V.K. (1989) Biochemistry, 28, 7796–7799.CrossRefGoogle Scholar
  14. 14.
    Liang, J., & Smith, B.E. (1984) in Advances in Nitrogen Fixation Research, (Veeger, C., & Newton, W.E., Eds.) p. 155, Nijhoff/Junk, Pudoc.Google Scholar
  15. 15.
    Liang, J., Madden, M.S., Shah, V.K., & Burris, R.H. (1990). Biochemistry (submitted).Google Scholar
  16. 16.
    Lowe, D.J., Fisher, K., Thorneley, R.N.F., Vaughn, S.A., & Burgess, B.K. (1989) Biochemistry 28, 8460–8466.CrossRefGoogle Scholar
  17. 17.
    Madden, M.S., Kindon, N.D., Ludden, P.W., & Shah, V.K. (1990). Proc. Natl. Acad. Sci. U.S.A. (in press).Google Scholar
  18. 18.
    McLean, P.A., & Dixon, R.A. (1981) Nature 292, 655–656.CrossRefGoogle Scholar
  19. 19.
    McLean, P.A., Smith, B.E., & Dixon, R.A. (1982). Biochem J. 211, 589–597.Google Scholar
  20. 20.
    McLean, P.A., True, A., Chapman, S., Nelson, M., Teo, B.-K., Munck, E., Hoffman, B., & Orme-Johnson, W.H., (1985). in Nitrogen Fixation Research Progress (Evans, H.J., Bottomley, P.J., & Newton, W.E., Eds.) p.620, Martinus Nihoff Publishers, Boston.Google Scholar
  21. 21.
    McLean P.A., True, A.E., Nelson, M.J., Chapman, S., Godfrey, M.R., Teo, B.-K., Orme-Johnson, W.H., & Hoffman, B.M. (1987). J. Am. Chem. Soc. 109, 943–945.CrossRefGoogle Scholar
  22. 22.
    Paustian, T.D., Shah, V.K., & Roberts, G.P. (1989). Proc. Natl. Acad. Sci. USA. 86, 6082–6086.CrossRefGoogle Scholar
  23. 23.
    Paustian, T.D., Shah, V.K., & Roberts, G.P. (1990) Biochemistry, 29, 3515–3522.CrossRefGoogle Scholar
  24. 24.
    Roberts, G.P., MacNeil, D., & Brill, W.J. (1978) J. Bacteriol. 136, 267–279.Google Scholar
  25. 25.
    Robinson, A.C., Dean, D.R. & Burgess, B.K. (1987) J. Biol. Chem. 262, 14327–14332.Google Scholar
  26. 26.
    Smith, B.E., Bishop, P.E., Dixon, R.A., Eady, R.R., Filler, W.A., Lowe, D.J., Richards, A.J.M., Thomson, A.J., Thorneley, R.N.F., & Postgate, J.R. (1985). in Nitrogen Fixation Research Progress (Evans, H.J., Bottomley, P.J., & Newton, W.E., eds.) pp. 597–603. Martinus Nijhoff Publishers, Boston.CrossRefGoogle Scholar
  27. 27.
    Shah, V.K. & Brill, W.J. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 3249–3253.CrossRefGoogle Scholar
  28. 28.
    Shah, V.K., Chisnell, J.R., & Brill, W.J. (1978). Biochem. Biophys. Res. Commun. 81, 232–236.CrossRefGoogle Scholar
  29. 29.
    Shah, V.K., Imperial, J., Ugalde, R.A., Ludden, P.W. & Brill, W.J. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 1636–1640.CrossRefGoogle Scholar
  30. 30.
    Shah, V.K., Hoover, T.R., Imperial, J., Paustian, T.D., Roberts, G.P., Ludden, P.W. (1988) in Nitrogen Fixation: Hundred Years After, (Bothe, H., de Bruijn, F.J., & Newton, W.E., Eds.) pp. 115–120, Gustav Fischer Verlag, Stuttgart, New York.Google Scholar
  31. 31.
    Ugalde, R.A., Imperial, J., Shah, V.K., & Brill, W.J. (1984). J. Bacteriol. 159, 888–893.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • Vinod K. Shah
    • 1
  • Mark S. Madden
    • 1
  • Paul W. Ludden
    • 1
  1. 1.Department of Biochemistry and Center for the Study of Nitrogen Fixation, College of Agricultural and Life SciencesUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations