Advertisement

Nodulins and nodule development

  • H. J. Franssen
  • B. Scheres
  • C. van de Wiel
  • B. Horvath
  • M. Moerman
  • W. C. Yang
  • F. Govers
  • T. Bisseling

Abstract

Nodule formation on the roots of leguminous plants has been well analyzed morphologically. Based on these analyses, root nodule formation has been divided into 3 distinct steps; (i) the pre-infection stage, (ii) infection and nodule formation, and (iii) nodule function and maintenance. During the pre-infection stage (brady)rhizobia interact with growing root hairs and induce root hair curling. During the second stage, the bacteria invade the root hair cell and the root cortex through the infection thread. Meanwhile, but independently from the infection process, cortical cells start dividing at several places and at these sites, the nodule primordia are formed. Infection threads grow towards these primordia and upon contact rhizobia are released from the tips of the infection threads into the cytoplasm of the plant cells. During the third stage, the bacteria differentiate into pleomorphic bacteroids that fix atmosphere nitrogen.

Keywords

Root Hair Nodule Development Infection Thread Grow Root Hair Indeterminate Nodule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Franssen, H.J., Nap, J.P., Gloudemans, T., Stiekema, W., van Lam, H., Govers, F., Louwerse, J., van Kammen, A. & Bisseling, T. (1987) Proc. Natl. Acad. Sci. USA 84, 4495–4499.CrossRefGoogle Scholar
  2. 2.
    Franssen, H.J., Scheres, B., van de Wiel, C. & Bisseling, T. (1988) in Molecular Genetics of Plant-Microbe Interactions, eds. Palacios, R. & Verma, D.P.S. (APS Press, St. Paul) pp. 321–326.Google Scholar
  3. 3.
    Gunning, B.E.S., Pate, J.S., Minchin, F.R. & Marks, J. (1974) Symp. Soc. Exp. Biol. 28, 87–126.Google Scholar
  4. 4.
    Hong, J.C., Nagao, R.T. & Key, J.L. (1989) Plant Cell 1, 937–943.CrossRefGoogle Scholar
  5. 5.
    Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Prime, J-C. & Dénarié, J. (1990) Nature 344, 781–784.CrossRefGoogle Scholar
  6. 6.
    Scheres, B., van de Wiel, C., Zalensky, A., Horvath, B., Spaink, H., van Eck, H., Zwartkruis, F., Wolters, A.M., Gloudemans, T., van Kammen, A. & Bisseling, T. (1990) Cell 60, 281–294.CrossRefGoogle Scholar
  7. 7.
    Scheres, B., van Engelen, F., van der Knaap, E., van de Wiel, C., van Kammen, A. & Bisseling, T. (1990) The Plant Cell in press.Google Scholar
  8. 8.
    van de Wiel, C., Scheres, B., Franssen, H., van Lierop, M.J., van Lammeren, A., van Kammen, A. & Bisseling, T. (1990) EMBO J. 9, 1–7.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • H. J. Franssen
    • 1
  • B. Scheres
    • 1
  • C. van de Wiel
    • 1
  • B. Horvath
    • 1
  • M. Moerman
    • 1
  • W. C. Yang
    • 1
  • F. Govers
    • 1
  • T. Bisseling
    • 1
  1. 1.Department of Molecular BiologyAgricultural UniversityWageningenThe Netherlands

Personalised recommendations