Advertisement

Alfalfa root nodule aspartate aminotransferase (AAT): Biochemical importance and genetic control

  • C. P. Vance
  • M. W. Famham
  • N. Degenhart
  • R. J. Larson
  • S. S. Miller
  • D. K. Barnes
  • J. S. Gantt

Abstract

Aspartate aminotransferase (AAT:EC 2.6.1.1) plays an important role in nitrogen (N) and carbon (C) metabolism in all plants and is particularly important in the assimilation of fixed-N derived from the legume-Rhizobium symbiosis (24). The enzyme catalyzes the reversible reaction Glutamate (Glu) + Oxaloacetate (OAA) → Aspartate (Asp) + α-Ketoglutarate (α-KG) (6). AAT plays an essential role in: 1) the assimilation of fixed N and C into asparagine (Asn) in legume root nodules (24); 2) the transfer of fixed C from mesophyll cells to bundle sheath cells in C4 plants (28); and 3) the flow of reducing equivalents to chloroplasts, mitochondria and perhaps bacteroids through a malate-aspartate shuttle (1,28). AAT has been isolated from both legume and nonlegume species and has been demonstrated to be a dimeric enzyme (5,7,16,19,22). Cytosolic, mitochondrial, and plastid forms of the plant enzyme have been documented and suggested to be controlled by different genetic loci Independent segregation of soluble, mitochondrial and glyoxysomal isozymes in maize and wheat support the idea that these forms of AAT are controlled by separate genes (3,23). Animal, cytosolic and mitochondrial forms of AAT have been identified and the genes encoding these proteins have been isolated (9,17). Plant genes encoding AAT have not been isolated.

Keywords

Nodule Development Bundle Sheath Cell Effective Nodule Ineffective Nodule Alfalfa Nodule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appels, M.A. (1989) Ph.D. Thesis (Agricultural University, Wageningen, The Netherlands), pp. 53–78.Google Scholar
  2. 2.
    Barnes, D.K., Heichel, G.H., Vance, C.P. & Ellis, W.R. (1984) Plant Soil 82, 303–314.CrossRefGoogle Scholar
  3. 3.
    Diaz, F. & Jouve, N. (1986) Euphvtica 35, 129–135.CrossRefGoogle Scholar
  4. 4.
    Farnham, M.W., Miller, S.S., Griffith, S.M. & Vance, C.P. (1990) Plant Phvsiol. 93, in press.Google Scholar
  5. 5.
    Forrest, J.C. & Wightman, F. (1972) Can. J. Biochem. 50, 813–829.CrossRefGoogle Scholar
  6. 6.
    Givan, C.V. (1980) in The Biochemistry of Plants. Vol. 5. eds. Stumpf, P.K. & Conn E.E. (Academic Press, New York), pp. 329–357.Google Scholar
  7. 7.
    Griffith, S.M. & Vance, C.P. (1989) Plant Phvsiol. 90, 1622–1629.CrossRefGoogle Scholar
  8. 8.
    Hirel, B., McNally, S.F., Gadal, P., Sumar, N. & Stewart, G.R. (1984) Eur. J. Biochem. 138, 63–66.CrossRefGoogle Scholar
  9. 9.
    Joh, T., Nomiyama, H., Maeda, S., Shimada, K. & Morino, Y. (1985) Proc. Natl. Acad. Sci. USA 82, 6065–6069.CrossRefGoogle Scholar
  10. 10.
    Laurell, C.B. (1966) Anal. Biochem. 15, 45–52.CrossRefGoogle Scholar
  11. 11.
    Maizel, M.V. (1971) in Methods in Virology. Vol. 5, eds. Maramorosch, K. & Koprowski, H. (Academic Press, New York), pp. 179–224.Google Scholar
  12. 12.
    Maniatis, T., Fritsch, E.F. & Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY)Google Scholar
  13. 13.
    Maxwell, C.A., Vance, C.P., Heichel, G.H. & Stade, S. (1984) Crop Sci. 24, 257–264.CrossRefGoogle Scholar
  14. 14.
    Miller, S.S., Boylan, K.L.M. & Vance, C.P. (1987) Plant Physiol. 84, 501–508.CrossRefGoogle Scholar
  15. 15.
    Morino, Y., Kagamiyama, H. & Wada, H. (1964) J. Biol. Chem. 239, PC943–944.Google Scholar
  16. 16.
    Numazawa, T., Yamada, S., Hase, T. & Suqiyama, T. (1989) Arch. Biochem. Biophys. 270, 313–319.CrossRefGoogle Scholar
  17. 17.
    Obaru, K., Nomiyama, H., Shimada, K., Nagshima, F., & Morino, Y. (1986) L Biol. Chem. 261, 16976–16983.Google Scholar
  18. 18.
    Ornstein, L. (1964) Ann. N.Y. Acad. Sci. 121, 404–427.Google Scholar
  19. 19.
    Reynolds, P.H.S., Boland, M.J. & Farnden, K.F. (1981) Arch. Biochem. Biophvs. 209, 524–533.CrossRefGoogle Scholar
  20. 20.
    Reynolds, P.H., Jones, W.T., Grant, M.R., Rodbeu, H.A. & Smith, L.A. (1988) in Nitrogen Fixation: Hundred Years After, eds. Bothe, H., deBruijn, F. J. & Newton, W.E. (Gustav Fischer, Stuttgart), pp. 574.Google Scholar
  21. 21.
    Rosendahl, L. & Vance, C.P. (1990) Plant Physiol. 92, in press.Google Scholar
  22. 22.
    Ryan, E., Bodley, F. Fottrell, Fottrell P.F. (1972) Phytochemistry 11, 957–963.CrossRefGoogle Scholar
  23. 23.
    Scandalios, J.G., Sorenson, J.C. & Ott, L.A. (1975) Biochem. Gen. 13, 759–768.CrossRefGoogle Scholar
  24. 24.
    Schubert, K.R. (1986) Annu. Rev. Plant Phvsiol. 90, 1622–1629.Google Scholar
  25. 25.
    Snapp, S. & Vance, C.P. (1986) Plant Physiol. 82, 390–395.CrossRefGoogle Scholar
  26. 26.
    Suzuki, A. & Gadal, P. (1984) Physiol. Veget. 22, 471–486.Google Scholar
  27. 27.
    Ta, T.C., Fans, M.A., & Macdowall, F.D.H. (1986) Plant Phvsiol. 80, 1002–1005.CrossRefGoogle Scholar
  28. 28.
    Wallsgrove, R.M., Keys, A.J., Lea, P. & Miflin, B.J. (1985) Plant Cell Environ. 6, 301–309.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • C. P. Vance
    • 1
  • M. W. Famham
    • 1
  • N. Degenhart
    • 1
  • R. J. Larson
    • 1
  • S. S. Miller
    • 1
  • D. K. Barnes
    • 1
  • J. S. Gantt
    • 1
  1. 1.USDA-ARS Plant Science Research Unit, Departments of Agronomy and Plant Genetics, and Plant BiologyUniversity of MinnesotaSt. PaulUSA

Personalised recommendations