Protein synthesis and protein phosphorylation in Bradyrhizobium japonicum bacteroids

  • D. B. Karr
  • D. W. Emerich


Biological nitrogen fixation requires a large portion of an organisms energy metabolism. Free-living diazotrophs fixing atmospheric nitrogen have longer doubling times than cultures supplied fixed nitrogen compounds. During symbiotic nitrogen fixation, the microsymbiont does not grow significantly during the most active phase of dinitrogen reduction. The non-growing condition of the microsymbionts could provide the necessary energy for nitrogen fixation. As much as 80% of the metabolic energy of a cell may be used for protein synthesis (6). The switching of metabolic energy from protein synthesis to dinitrogen reduction could supply the energy needs of nitrogen fixation without requiring additional energy sources or invoking supplemental metabolic pathways. This concept of switching energy from protein synthesis to dinitrogen fixation was first proposed by Perry Wilson in his studies on metabolism in non-growing cultures (12).


Nitrogen Fixation Symbiotic Nitrogen Fixation Acetylene Reduction Activity Young Nodule Additional Energy Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bassarab, S. & Werner, D. (1987) J. Plant Physiol. 130, 233–241.CrossRefGoogle Scholar
  2. 2.
    Bisseling, T., van den Bos, R.C., Weststrate, M.W., Hakkaart, M.J J. & van Kammen, A. (1979) Biochim. Biophys. Acta 562, 515–526.Google Scholar
  3. 3.
    Karr, D.B. & Emerich, D.W. (1988) Plant Physiol. 86, 693–699.CrossRefGoogle Scholar
  4. 4.
    Karr, D.B. & Emerich, D.W. (1989) J. Bacteriol. 171, 3420–3426.Google Scholar
  5. 5.
    Krishnan, H. & Pueppke, S.G. (1989) Symbiosis 7, 127–138.Google Scholar
  6. 6.
    Lehninger, A. (1965) Bioenergetics (W.A. Benjamin, Inc., New York).Google Scholar
  7. 7.
    McRae, D.G., Miller, R.W. & Berndt, W.B. (1989) Symbiosis 7, 67–80.Google Scholar
  8. 8.
    Reibach, P.H. & Streeter, J.G. (1984) J. Bacteriol. 159, 47–52.Google Scholar
  9. 9.
    Shaw, B.D. & Sutton, W.D. (1979) Biochim. Biophys. Acta 563, 216–226.Google Scholar
  10. 10.
    Suzuki, H. & Venna, D.P.S. (1989) The Plant Cell 1, 373–379.CrossRefGoogle Scholar
  11. 11.
    van den Bos, R.C., Bisseling, T. & van Kammen (1978) J. Gen Microbiol. 109, 131–139.Google Scholar
  12. 12.
    Wilson, P.W. (1938) J. Bacteriol. 35, 601–623.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • D. B. Karr
    • 1
  • D. W. Emerich
    • 1
  1. 1.Department of BiochemistryUniversity of MissouriColumbiaUSA

Personalised recommendations