Advertisement

Nitrogen fixation in filamentous cyanobacteria

  • R. Haselkorn
  • M. Basche
  • H. Böhme
  • D. Borthakur
  • P. B. Borthakur
  • W. J. Buikema
  • M. E. Mulligan
  • D. Norris

Abstract

Cyanobacteria have the same requirements for nitrogen fixation as other diazotrophs: synthesis of the nitrogenase complex and its cofactors, a source of ATP and low potential electrons, and an environment protected from oxygen. Unique among diazotrophs, cyanobacteria evolve oxygen in the light. Filamentous strains such as Anabaena solve the problem of protecting nitrogenase from oxygen by differentiating specialized cells called heterocysts at regular intervals along the filament. In the heterocyst, the oxygen-evolving reaction of Photosystem II is turned off, CO2 fixation stops, nitrogenase, cofactors and electron donor proteins are synthesized, and the oxidative pentose pathway is activated. A double-layered envelope of polysaccharide and glycolipid is laid down outside the existing cell wall. New connections between the heterocyst and the adjacent vegetative cells are established; these mediate the transport of carbohydrate and of fixed nitrogen.

Keywords

Nitrogen Fixation Shuttle Vector Heterocyst Differentiation Wild Type Anabaena Amino Terminal Half 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Böhme, H. and Haselkorn, R. (1988). Mol. Gen. Genet. 214, 278–285.CrossRefGoogle Scholar
  2. 2.
    Borthakur, D., Basche, M., Buikema, W. J., Borthakur, P. B. and Haselkorn, R. (1990). Mol. Gen. Genet. 221, 227–233.CrossRefGoogle Scholar
  3. 3.
    Borthakur, D. and Haselkorn, R. (1989) J. Bacteriol. 171, 5759–5761.Google Scholar
  4. 4.
    Chapman and Meeks, J. C. (1987). J. Gen. Microbiol. 133, 111–120.Google Scholar
  5. 5.
    Elhai, J. and Wolk, C. P. (1988). Methods Enzymol. 167, 747–754 (1988).CrossRefGoogle Scholar
  6. 6.
    Golden, J. W., Carrasco, C. D., Mulligan, M. E., Schneider, G. J. and Haselkorn, R. (1988) J. Bacteriol. 170, 5034–5041 (1988).Google Scholar
  7. 7.
    Golden, J. W., Mulligan, M. E. and Haselkorn, R. (1987) Nature 327, 526–529.CrossRefGoogle Scholar
  8. 8.
    Golden, J. W., Robinson, S. J. and Haselkorn, R. (1985) Nature 314. 419–423.CrossRefGoogle Scholar
  9. 9.
    Haselkorn, R. (1989) in Mobile DNA, eds. Berg, D. E. & Howe, M. M. (American Society for Microbiology, Washington, D. C.), pp. 735–742.Google Scholar
  10. 10.
    Hoover, T. R., Imperial, J., Ludden, P. W. and Shah, V. K. (1989). Biochemistry 28, 2768–2771.CrossRefGoogle Scholar
  11. 11.
    Lammers, P. J., Golden, J. W. and Haselkorn, R. (1986). Cell 44, 905–911.CrossRefGoogle Scholar
  12. 12.
    Mulligan, M. E., Buikema, W. J. and Haselkorn, R. (1988). J. Bacteriol. 170, 4406–4410.Google Scholar
  13. 13.
    Mulligan, M. E. and Haselkorn, R. (1989). J. Biol. Chem. 264, 19200–19207.Google Scholar
  14. 14.
    Orme-Johnson, W. H. (1985). Annu. Rev. Biophys. Chem. 14, 419–459.CrossRefGoogle Scholar
  15. 15.
    Paustian, T. D., Shah, V. K. and Roberts, G. P. (1990). Biochemistry 29, 3515–3522.CrossRefGoogle Scholar
  16. 16.
    Rice, D., Mazur, B. J. and Haselkorn, R. (1982). J. Biol. Chem. 257, 13157–13163.Google Scholar
  17. 17.
    Wolk, C. P., Vonshak, A., Kehoe, P. and Elhai, J. (1984). Proc. Natl. Acad. Sci. U.S.A. 81, 1561–1565.CrossRefGoogle Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • R. Haselkorn
    • 1
  • M. Basche
    • 1
  • H. Böhme
    • 1
  • D. Borthakur
    • 1
  • P. B. Borthakur
    • 1
  • W. J. Buikema
    • 1
  • M. E. Mulligan
    • 1
  • D. Norris
    • 1
  1. 1.Department of Molecular Genetics and Cell BiologyThe University of ChicagoChicagoUSA

Personalised recommendations