Advertisement

Organization and regulation of nitrogen fixation genes in Rhodobacter capsulatus

  • W. Klipp

Abstract

The analysis of nitrogen fixation genes (nif) was first carried out in the facultative anaerobe Klebsiella pneumoniae and this organism has become a paradigm. Within the last few years the application of DNA seguencing and molecular genetics in another free-living nitrogen fixing organism, namely the aerobic soil bacterium Azotobacter vinelandii, has allowed comparative studies on nif genes. With the exception of nifJ and nifL, homologues to all K. pneumoniae nif genes are present in A. vinelandii. Although there are spatial differences, the A. vinelandii nif genes have the same seguential arrangement as the corresponding genes from K. pn1eumoniae (Fig.1). The open reading frames, which are interspersed among the “common” nif genes, have no counterpart in the K. pneumoniae nif gene cluster (13,15). In addition to the conventional molybdenum nitrogenase, A. vinelandii harbors two further genetically distinct nitrogenase systems (for review see ref. 14,27): nitrogenase-2, a vanadium-containing enzyme, and nitrogenase-3, an enzyme that does not apppear to contain either Mo or V.

Keywords

Nitrogen Fixation Rhodobacter Capsulatus Cysteine Motif Nitrogen Fixation Gene ORF5 Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adman, E.T., Sieker, L.C. & Jensen, L.H. (1973) J. Biol. Chem. 248, 3987–3996.Google Scholar
  2. 2.
    Alias, A., Cejudo, F.J., Chabert, J., Willison, J.C. & Vignais, P.M. (1989) Nucl. Acids Res. 17, 5377.CrossRefGoogle Scholar
  3. 3.
    Arnold, W., Rump, A., Klipp, W., Priefer, U.B. & Punier, A. (1988) J. Mol. Biol. 203, 715–738.CrossRefGoogle Scholar
  4. 4.
    Avtges, P.P., Scolnik, P.A. & Haselkorn, R. (1983) J. Bacteriol. 156, 251–256.Google Scholar
  5. 5.
    Beynon, J., Ally, A., Cannon, M., Cannon, F., Jacobson, M., Cash, V. & Dean, D. (1987) J. Bacteriol. 169, 4024–4029.Google Scholar
  6. 6.
    Cannon, M., Cannon, F., Buchanan-Wollaston, V., Ally, D., Ally, A. & Beynon, J. (1988) Nucl. Acids Res. 16, 11379.CrossRefGoogle Scholar
  7. 7.
    Ebeling, S., Noti, J.D. & Hennecke, H. (1988) J. Bacteriol. 170, 1999–2001.Google Scholar
  8. 8.
    Gosnik, M.M., Franklin, N.M. & Roberts, G.P. (1990) J. Bacteriol. 172, 1441–1447.Google Scholar
  9. 9.
    Guddat, L.W., Cowan, S.W., Machin, K.J., Isaacs, N.W. & Cotton, R.G.H. (1985) J. Mol. Biol. 186, 481–482.CrossRefGoogle Scholar
  10. 10.
    Hawkes, T.R. & Smith, B.E. (1983) Biochem. J. 209, 43–50.Google Scholar
  11. 11.
    Hoover, T.R., Imperial, J., Ludden, P.W. & Shah, V.K. (1989) Biochemistry 28, 2768–2771.CrossRefGoogle Scholar
  12. 12.
    Imperial, J., Ugalde, R.A., Shah, V.K. & Brill, W.J. (1984) J. Bacteriol. 158, 187–194Google Scholar
  13. 13.
    Jacobson, M.R., Brigle, K.E., Bennett, L.T., Setterquist, R.A., Wilson, M.S., Cash, V.L., Beynon, J., Newton, W.E. & Dean, D.R. (1989) J. Bacteriol. 171, 1017–1027.Google Scholar
  14. 14.
    Joerger, R.D. & Bishop, P.E. (1988) Crit. Rev. Microbiol. 16, 1–14.CrossRefGoogle Scholar
  15. 15.
    Joerger, R.D. & Bishop, P.E. (1988) J. Bacteriol. 170, 1475–1487.Google Scholar
  16. 16.
    Jones, R. & Haselkorn, R. (1988) Nucl. Acids Res. 16, 8735.CrossRefGoogle Scholar
  17. 17.
    Jones, R. & Haselkorn, R. (1989) Mol. Gen. Genet. 215, 507–516.CrossRefGoogle Scholar
  18. 18.
    Klipp, W., Masepohl, B. & Pühler, A. (1988) J. Bacteriol. 170, 693–699.Google Scholar
  19. 19.
    Klipp, W., Reiländer, H., Schlüter, A., Krey, R. & Pünier, A. (1989) Mol. Gen. Genet. 216, 293–302.CrossRefGoogle Scholar
  20. 20.
    Kranz, R.G. & Haselkorn, R. (1986) Proc. Natl. Acad. Sci. USA 83, 6805–6809.CrossRefGoogle Scholar
  21. 21.
    Kranz, R.G., Pace, V.M. & Caldicott, I.M. (1990) J. Bacteriol. 172, 53–62.Google Scholar
  22. 22.
    Masepohl, B., Klipp, W. & Pünier, A. (1988) Mol. Gen. Genet. 212, 27–37.CrossRefGoogle Scholar
  23. 23.
    Moreno-Vivian, C., Hennecke, S., Pühler, A. & Klipp, W. (1989) J. Bacteriol. 171, 2591–2598.Google Scholar
  24. 24.
    Moreno-Vivian, C., Schmehl, M., Masepohl, B., Arnold, W. & Klipp, W. (1989) Mol. Gen. Genet. 216, 353–363.CrossRefGoogle Scholar
  25. 25.
    Mulligan, M.E. & Haselkorn, R. (1989) J. Biol. Chem. 264, 19200–19207.Google Scholar
  26. 26.
    Mulligan, M.E., Buikema, W.J. & Haselkorn, R. (1988) J. Bacteriol. 170, 4406–4410.Google Scholar
  27. 27.
    Pau, R.N. (1989) TIBS, 183–186.Google Scholar
  28. 28.
    Roberts, G.P., MacNeil, T., MacNeil, D. & Brill, W.J. (1978) J. Bacteriol. 136, 267–279.Google Scholar
  29. 29.
    Robson, R., Woodley, P. & Jones, R. (1986) EMBO J. 5, 1159–1163.Google Scholar
  30. 30.
    Saeki, K., Miyatake, Y., Young, D.A., Marrs, B.L. & Matsubara, H. (1990) Nucl. Acids Res. 18, 1060.CrossRefGoogle Scholar
  31. 31.
    Schatt, E., Jouanneau, Y. & Vignais, P.M. (1989) J. Bacteriol. 171, 6218–6226.Google Scholar
  32. 32.
    Schumann, J.P., Waitches, G.M. & Scolnik, P.A. (1986) Gene 48, 81–92.CrossRefGoogle Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • W. Klipp
    • 1
  1. 1.Lehrstuhl für GenetikUniversität BielefeldBielefeldGermany

Personalised recommendations