Advertisement

Production of nitrite and N2O by the ammonia-oxidizing nitrifiers

  • Alan B. Hooper
  • David M. Arciero
  • Alan A. DiSpirito
  • James Fuchs
  • Matthew Johnson
  • Frank LaQuier
  • Gary Mundfrom
  • Hugh McTavish

Abstract

Nitrosomonas is an obligately autotrophic and aerobic bacterium which produces energy for growth from the following reactions: NH3 + O2 + 2e- → NH2OH (ammonia monoxygenase, “AMO”) (8); NH2OH + H2O → 4e- + 4H+ + HNO2 (hydroxylamine oxidoreductase, “HAO”) (3) and 1/2 O2 + 2e- + 2H+ → H2O (terminal oxidase).

Keywords

Nitrous Oxide Nitrite Reductase Pyridine Nucleotide Terminal Oxidase Nitrosomonas Europaea1 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Anderson, D.G. & McKay, L.L. (1983) Appl. Envt. Microbiol. 46, 549–552.Google Scholar
  2. 2.
    Anderson, I.C. & Levine, J.S. (1986) Appl. Envt. Microbiol. 51, 938–945.Google Scholar
  3. 3.
    Andersson, K.K. & Hooper, A.B. (1983) FEBS Lett. 164, 236–240.CrossRefGoogle Scholar
  4. 4.
    Andersson, K.K., Philson, S.B., & Hooper, A.B. (1982) Proc. Nat. Acad. Sci. USA 79, 5871–5875.CrossRefGoogle Scholar
  5. 5.
    Arciero, D.M. & Hooper, A.B. (1989) J. Cell Biol. 107, 620a.Google Scholar
  6. 6.
    DiSpirito, A.A., Taaffe, L.R., Lipscomb, J.D., & Hooper, A.B. (1985) Biochim. Biophys. Acta 827, 320–326.CrossRefGoogle Scholar
  7. 7.
    Goreau, T.J., Kaplan, W.A., Wofsy, F.C., McElroy, M.B., Valois, F.W., & Watson, S.W. (1980) Appl. Env. Microbiol. 40, 526–532.Google Scholar
  8. 8.
    Hollocher, T.C., Tate, M.E., & Nicholas, D.J.D. (1981) J. Biol. Chem. 256, 10834–10836.Google Scholar
  9. 9.
    Hooper, A.B. (1968) Biochim. Biophys. Acta 162, 49–65.CrossRefGoogle Scholar
  10. 10.
    Hooper, A.B., Maxwell, P.C., & Terry, K.R. (1978) Biochem. 17, 2984–2989.CrossRefGoogle Scholar
  11. 11.
    Hooper, A.B., & Terry, K.R. (1979) Biochim. Biophys. Acta 571, 12–20.Google Scholar
  12. 12.
    Hooper, A.B., & Terry, K.R. (1973) J. Bacterid. 115, 480–485.Google Scholar
  13. 13.
    Kajie, S.-I. & Anraku, Y. (1986) Eur. J. Biochem. 154, 457–463.CrossRefGoogle Scholar
  14. 14.
    Liu, M-C., Bakel, B.W., Liu, M-Y, & Dao, T.N. (1988) Arch. Biochem. Biophys. 262, 259–265.CrossRefGoogle Scholar
  15. 15.
    Logan, M.S.P. & Hooper, A.B. (1989) J. Inorg. Biochem. 36, 217.CrossRefGoogle Scholar
  16. 16.
    Miller, D.J. & Nicholas, D.J.D. (1985) J. Gen. Microbiol. 131, 2851–2854.Google Scholar
  17. 17.
    Miller, D.J. & Wood, P.M. (1983) J. Gen. Microbiol. 129, 1645–1650.Google Scholar
  18. 18.
    Poth, M. (1986) Appl. Envt. Microbiol. 52, 957–959.Google Scholar
  19. 19.
    Poth, M. & Focht, D.D. (1985) Appl. Envt. Microbiol. 49, 1134–1141.Google Scholar
  20. 20.
    Ritchie, G.A.F. & Nicholas, D.J.D. (1972) Biochem. J. 126, 1181–1191.Google Scholar
  21. 21.
    Sambrook, J., Fritsch, E.F., & Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Second Edition, (Cold Spring Harbor.Laboratory, Cold Spring Harbor, NY).Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • Alan B. Hooper
    • 1
  • David M. Arciero
    • 1
  • Alan A. DiSpirito
    • 1
  • James Fuchs
    • 1
  • Matthew Johnson
    • 1
  • Frank LaQuier
    • 1
  • Gary Mundfrom
    • 1
  • Hugh McTavish
    • 1
  1. 1.Dept. Genetics and Cell BiologyUniv. MinnesotaSt. PaulUSA

Personalised recommendations