Genetic analysis of sym genes and other nodule-related genes in Pisum sativum

  • Norman F. Weeden
  • Barbara E. Kneen
  • Thomas A. LaRue


The formation of nodules on the roots of legumes is a complex process, involving genes on both the host’s and the bacterial genome. We use the garden pea (Pisum sativum L.) as our model system, concentrating on the genes of the host plant that affect nodulation. Two classes of genes are being analyzed: mutants that produce phenotypic changes in nodule number or physiology (referred to as sym mutants) and genes encoding nodulins or other proteins with important roles in nodule biochemistry. Our approach has been to carefully characterize the sym mutants, thereby defining as accurately as possible their role in nodule formation and to map each of the sym and nodulin genes on the pea linkage map. Functionally related genes do not generally form clusters in the genomes of higher eukaryotes, and we expected the genes involved in nodule formation to be widely distributed on the pea linkage map. Correspondance between the map positions of sym and nodulin genes might indicate that the two are genetically related. If the two are coded by the same locus the precise metabolic defect affecting nodule formation in the mutant and, conversely, the mechanism through which a nodulin influences nodulation would be revealed.


Glutamine Synthetase Nodule Formation Complementation Group Nodulation Mutant Glutamine Synthetase Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bisseling, T., Been, C., Klugkist, J., van Kammen, A. & Nadler, K. (1983) EMBO J. 2, 961–966.Google Scholar
  2. 2.
    Blixt, S. (1970) in Handbook of Genetics. Vol 2, ed. King, R. C. (Plenum Press, New York), pp. 181–221.Google Scholar
  3. 3.
    Bojsen, K., Abildsten, D., Jensen, E. O., Paludan, K. & Marcker, K. A. (1983) EMBO J. 2, 1165–1168.Google Scholar
  4. 4.
    Domoney, C., Ellis, T. H. N. & Davies, D. R. (1986) Mol. Gen. Genet. 202, 280–285.CrossRefGoogle Scholar
  5. 5.
    Duc, G., Trouvelot, A. Gianinazzi-Pearson, V. & Gianinazzi, S. (1989) Plant Sci. 60, 215–222.CrossRefGoogle Scholar
  6. 6.
    Engvild, K.J. (1987) Theor. Appl. Genet 74, 711–713.CrossRefGoogle Scholar
  7. 7.
    Fearn, J. C. & LaRue, T. A. (1990) Plant Mol. Biol. 14, 207–216.CrossRefGoogle Scholar
  8. 8.
    Fearn, J. C. & LaRue, T. A. (1990) in Proc. Penn State Symposium “Polyamines and Ethylene: Biochemistry, Physiology and Interactions (in press).Google Scholar
  9. 9.
    Feinberg, A. P. & Vogelstein, B. (1983) Anal. Biochem. 132, 6–13.CrossRefGoogle Scholar
  10. 10.
    Gloudemans, T., Moerman, M., van Beckum, J., Gundersen, J., van Kämmen, A., & Bisseling, T. (1988) in Nitrogen Fixation: Hundred Years After, eds. Bothe, H., de Bruijn, F. J. & Newton, W. E. (Gustav Fischer, Stuttgart) pp. 611–622.Google Scholar
  11. 11.
    Goodman, M. M., & Stuber, C. W. (1983) in Isozymes in Plant Genetics and Breeding. Part B, eds. Tanksley, S. D. & Orton, T. J. (Elsevier, Amsterdam) pp. 1–33.Google Scholar
  12. 12.
    Govers, F., Nap, J.-P., van Kammen, A. & Bisseling, T. (1987) Plant Physiol. Biochem. 25, 309–322.Google Scholar
  13. 13.
    Jacobsen, E. (1984) Plant Soil 82, 427–438.CrossRefGoogle Scholar
  14. 14.
    Kneen, B. E. & LaRue, T. A. (1984) J. Hered. 75, 238–240.Google Scholar
  15. 15.
    Kneen, B. E. & LaRue, T. A. (1986) Pisum Newslett. 18, 33.Google Scholar
  16. 16.
    Kneen, B. E. & LaRue, T. A. (1988) Plant Sci. 58, 177–182.CrossRefGoogle Scholar
  17. 17.
    Kneen, B. E., LaRue, T. A. & Weeden, N. F. (1984) Pisum Newslett. 16, 31–34.Google Scholar
  18. 18.
    Lee, J. S., Brown, G. G. & Verma, D. P. S. (1983) Nucleic Acids Res. 11, 5541–5553.CrossRefGoogle Scholar
  19. 19.
    Lee, J. S. & Verma, D. P. S. (1984) EMBO J. 3, 2745–2752.Google Scholar
  20. 20.
    Lie, T. A. (1984) Plant and Soil 82, 415–425.CrossRefGoogle Scholar
  21. 21.
    Polans, N. O., Weeden, N. F. & Thompson, W. F. (1985) Proc. Natl. Acad. Sci. USA 82, 5083–5087.CrossRefGoogle Scholar
  22. 22.
    Tanksley, S. D. & Rick, C. M. (1980) Theor. Appl. Genet. 57, 161–170.CrossRefGoogle Scholar
  23. 23.
    Tingey, S. V., Walker, E. L. & Coruzzi, G. M. (1987) EMBO J. 6, 1–9.Google Scholar
  24. 24.
    Weeden, N. F. (1985) in The Pea Crop, eds Hebblethwaite, P. D., Heath, M. C. & Dawkins, T. C. (Butterworths, London) pp. 55–66.Google Scholar
  25. 25.
    Weeden, N. F. & Marx, G. A. (1984) J. Hered. 75, 365–370.Google Scholar
  26. 26.
    Weeden, N. F. & Marx, G. A. (1987) J. Hered. 78, 153–159.Google Scholar
  27. 27.
    Weeden, N. F. & Wolko, B. (1990) in Genetic Maps, ed. O’Brien, S. J. (Cold Spring Harbor Press, Cold Spring Harbor) pp. 6.106–6.112.Google Scholar
  28. 28.
    Wendel, J. F. & Weeden, N. F. (1989) in Isozymes in Plant Biology, eds. Soltis, D. E. & Soltis, P. S. (Dioscorides Press, Portland, OR) pp. 5–45.CrossRefGoogle Scholar
  29. 29.
    Young, J. P. W. (1985) J. Hered. 76, 207–208.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • Norman F. Weeden
    • 1
  • Barbara E. Kneen
    • 2
  • Thomas A. LaRue
    • 2
  1. 1.Department of Horticultural SciencesCornell UniversityGenevaUSA
  2. 2.Boyce Thompson InstituteIthacaUSA

Personalised recommendations