Nodulation genetics: the plant-bacterial interface

  • Sharon R. Long


The interaction of Rhizobium bacteria with legume nodules proceeds in a series of stages controlled by both bacteria and plant. The success of the interaction is dependent, at each of many stages, on compatibility between the plant and the bacterium: thus the bacterial symbionts are said to display host specificity. The past few years have seen increasing use of bacterial genetics to explore the mechanism and regulation of this symbiosis. As seen elsewhere in this volume, the plant genetics and molecular biology of this process is also being studied increasingly. In early stages of most symbioses, bacteria cause the deformation of growth in plant epidermal root hairs, and stimulate host cortical cells to divide (see 12 for review). These early steps are controlled by nodulation (nod) genes in the bacteria (12). The plant expresses uniquely several early nodulins (ENOD sequences) (Franssen, Bisseling, et al. and other papers, this volume) at early stages. During subsequent invasion, bacterial genes for a number of possibly interchangeable surface components are important (references 9 and 17 provide examples in one Rhizobium for equivalent action by more than one surface polysaccharide). Other bacterial functions are also needed for infection and release.


Root Hair Bacterial Symbiont Legume Nodule NodD Protein Rhizobium Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnett, M. & Long, S. R. (1990) J. Bacteriol. In press.Google Scholar
  2. 2.
    Burn, J., Rossen, L. & Johnston, A. W. B. (1987) Genes Dev. 1, 456–464.CrossRefGoogle Scholar
  3. 3.
    Delauney, A. & Verma, D. P. S. (1988) Plant Mol. Biol. Rep. 6, 279–285.CrossRefGoogle Scholar
  4. 4.
    Dickstein, R., Bisseling, T., Reinhold, U. N. & Ausube1, F. (1988) Genes and Devel. 2, 677–687.CrossRefGoogle Scholar
  5. 5.
    Dusha, I., Bakos, A., Kondorosi, A., De Bruijn, F. J. & Schell, J. (1989) Mol. Gen. Genet. 219, 89–96.CrossRefGoogle Scholar
  6. 6.
    Economou, A., Hamilton, W. D. O., Johnston, A. W. B. & Downie, J. A. (1990) EMBO J. 9, 349–354.Google Scholar
  7. 7.
    Faucher, C., Maillet, F., Vasse, J., Rosenberg, C., Van Brussel, A. A. N., Truchet, G. & Denarie, J. (1988) J. Bacteriol. 170, 5489–5499.Google Scholar
  8. 8.
    Fisher, R. & Long, S. R. (1989) J. Bacteriol. 171, 5492–5502.Google Scholar
  9. 9.
    Glazebrook, J. & Walker, G. C. (1989) Cell 56, 661–672.CrossRefGoogle Scholar
  10. 10.
    Horvath, B., Bachern, C. W. B., Schell, J. & Kondorosi, A. (1987) EMBO J. 6, 841–848.Google Scholar
  11. 11.
    Kondorosi, E., Gyuris, J., Schmidt, J., John, M., Duda, E., Hoffmann, B., Schell, J. & Kondorosi, A. (1989) EMBO J. 8, 1331–1340.Google Scholar
  12. 12.
    Long, S. R. (1989) Cell 56, 203–214.CrossRefGoogle Scholar
  13. 13.
    Mulligan, J. T. & Long, S. R. (1989) Genetics 122, 7–18.Google Scholar
  14. 14.
    Schwedock, J. & Long, S. R. (1989) Mol. Plant-Microbe Interactions 2, 181–194.CrossRefGoogle Scholar
  15. 15.
    Spaink, G. P., Wijffelman, C. A., Okker, R. J. H. & Lugtenberg, B. E. J. (1989) Plant Mol. Biol. In press.Google Scholar
  16. 16.
    Van Brussel, A. A. N., Zaat, S. A. J., Canter Cremers, H. C. J., Wijffelman, C. A., Pees, E., Tak, T. & Lugtenberg, B. J. J. (1986) J. Bacteriol. 165, 517–522.Google Scholar
  17. 17.
    Williams, M. N. V., Hollingsworth, R. I., Klein, S. & Signer, E. R. (1990) J. Bacteriol. 172, 2622–2632.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • Sharon R. Long
    • 1
  1. 1.Dept. of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations