Advertisement

Rhizobium meliloti nodulation genes specify the production of an alfalfa-specific sulfated lipo-oligosaccharide signal

  • Patrice Lerouge
  • Philippe Roche
  • Jean-Claude Promé
  • Catherine Faucher
  • Jacques Vasse
  • Fabienne Maillet
  • Sylvie Camut
  • Francoise de Billy
  • David G. Barker
  • Jean Dénarié
  • George Truchet

Abstract

The infection of leguminous plants by Rhizobium and the subsequent co-differentiation of both organisms leads ultimately to the formation of the unique nitrogen-fixing plant organ known as the root nodule (16). Within the nodule, the Rhizobium are furnished with photosynthate-derived energy and, in exchange, the endosymbiotic bacterium reduces atmospheric nitrogen to a form which can be assimilated by the host plant. This remarkable symbiosis has been the subject of extensive research for many years, but it is only recently that it has become possible to study, at the molecular level, the role of diffusible factors in plant-bacterial signalling and recognition, with the exciting prospect that such molecules might also be responsible for triggering plant morphogenesis.

Keywords

Root Hair Infection Thread Common Vetch Nodule Organogenesis Root Hair Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banfalvi, Z. & Kondorosi, A. (1989) Plant Mol. Biol. 13, 1–12.CrossRefGoogle Scholar
  2. 2.
    Bhuvaneswari, T.V. & Solheim, B. (1985) Physiol. Plant. 63, 25–34.CrossRefGoogle Scholar
  3. 3.
    Cervantes, E., Sharma, S.B., Maillet, F., Vasse, J., Truchet, G. & Rosenberg, C. (1989) Molec. Microbiol. 3, 745–755.CrossRefGoogle Scholar
  4. 4.
    Darvill, A.G. & Albersheim, P. (1984) Ann. Rev. Plant. Physiol. 35, 243–298.CrossRefGoogle Scholar
  5. 5.
    Dazzo, F.B. & Gardiol, A.E. (1984) in Genes Involved in Microbe-Plant Interactions, eds., Verma, D.P.S. and Hohn, T.H. (Springer-Verlag, Wien/New York), pp. 3–31.CrossRefGoogle Scholar
  6. 6.
    Debelle, F., Rosenberg, C., Vasse, J., Maillet, F., Martinez, E., Denarie, J. & Truchet, G. (1986) J. Bacteriol. 168, 1075–1086.Google Scholar
  7. 7.
    Diaz, C.L., Melchers, L.S., Hooykaas, P.J.J., Lugtenberg, B.J.J. & Kijne, J.W. (1989) Nature 338, 579–581.CrossRefGoogle Scholar
  8. 8.
    Faucher, C., Maillet, F., Vasse, J., Rosenberg, C., van Brussel, A.A.N., Truchet, G. & Denarie, J. (1988) J. Bacteriol. 170, 5489–5499.Google Scholar
  9. 9.
    Faucher, C., Camut, S., Denarie, J. & Truchet, G. (1989) Mol. Plant-Microbe Interact. 2, 291–300.CrossRefGoogle Scholar
  10. 10.
    Finan, T.M., Hirsch, A.M., Leigh, J.A., Johansen, E., Kuldau, G.A., Deegan, S., Walker, G.C. & Signer, E.R. (1985) Cell 40, 869–877.CrossRefGoogle Scholar
  11. 11.
    Hollingsworth, R., Squartini, A., Philip-Hollingsworth, S. & Dazzo, F. (1989) in Signal Molecules in Plant and Plant-Microbe Interactions, ed. Lugtenberg, B.J.J. (Springer-Verlag, Berlin/Heidelberg), pp. 387–393.Google Scholar
  12. 12.
    Kapp, D., Niehaus, K., Quandt, J., Muller, P. & Puhler, A. (1990) The Plant Cell 2, 139–151.CrossRefGoogle Scholar
  13. 13.
    Kijne, J.W., Diaz, C.L. & Lugtenberg, B.J.J. (1989) in Signal Molecules in Plant and Plant-Microbe Interactions, ed. Lugtenberg, B.J.J. (Springer-Verlag, Berlin/Heidelberg), pp. 351–358.Google Scholar
  14. 14.
    Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Prome, J.C. & Denarie, J. (1990) Nature 344, 781–784.CrossRefGoogle Scholar
  15. 15.
    Lis, H. & Sharon, N. (1986) Ann. Rev. Biochem. 55, 35–67.CrossRefGoogle Scholar
  16. 16.
    Long, S.R. (1989) Cell 56, 203–214.CrossRefGoogle Scholar
  17. 17.
    Scheres, B., Van De Wiel, A., Zalensky, A., Harvath, B., Spaink, H., Van Eck, H., Zwartkruis, F., Wolters, A.-M., Gloudemans, T., Van Kammen, A. & Bisseling, T. (1990) Cell 60, 281–294.CrossRefGoogle Scholar
  18. 18.
    Schmidt, J., Wingender, R., John, M., Wieneke, U. & Schell, J. (1988) Proc. Nat. Acad. Sci. USA 85, 8578–8582.CrossRefGoogle Scholar
  19. 19.
    Schwedock, J. & Long, S.R. (1989) Molec. Plant-Microbe Interact. 2, 181–194.CrossRefGoogle Scholar
  20. 20.
    Truchet, G., Michel, M. & Denarie, J. (1980) Differentiation 16, 163–173.CrossRefGoogle Scholar
  21. 21.
    Truchet, G., Barker, D.G., Camut, S., deBilly, F., Vasse, J. & Huguet, T. (1989) Mol. Gen. Genet. 219, 65–68.CrossRefGoogle Scholar
  22. 22.
    van Brussel, A.A.N., Zaat, S.A.J., Canter Cremers, A.C.J., Wijffelman, C.A., Pees, E., Tak, T. & Lugtenberg, B.J.J. (1987) J. Bcteriol. 161, 517–522.Google Scholar
  23. 23.
    Zaat, S.A.J., van Brussel, A.A.N., Tak, T., Pees, E.E. & Lugtenberg, B.J.J. (1987) J. Bacteriol. 169, 3388–3391.Google Scholar
  24. 24.
    Zeroni, M. & Hall, M.A. (1980) in Hormonal Regulation of Development. 1. Molecular Aspects, ed., MacMillan, J. (Springer-Verlag, Berlin/Heidelberg), pp. 511–586.CrossRefGoogle Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • Patrice Lerouge
    • 1
  • Philippe Roche
    • 1
  • Jean-Claude Promé
    • 1
  • Catherine Faucher
    • 2
  • Jacques Vasse
    • 2
  • Fabienne Maillet
    • 2
  • Sylvie Camut
    • 2
  • Francoise de Billy
    • 2
  • David G. Barker
    • 2
  • Jean Dénarié
    • 2
  • George Truchet
    • 2
  1. 1.Centre de Recherche de Biochimie et de Genetique CellulairesCNRS-UPSToulouse CedexFrance
  2. 2.Laboratoire de Biologie Moleculaire des Relations Plantes-MicroorganismesCNRS-INRACastanet-Tolosan CedexFrance

Personalised recommendations