Advertisement

Crystal structure of the nitrogenase iron protein from Azotobacter vinelandii

  • Millie M. Georgiadis
  • Pinak Chakrabarti
  • Douglas C. Rees

Abstract

The nitrogenase enzyme system consists of two component proteins, an iron (Fe-) protein and a molybdenum-iron (MoFe)-protein. Prior to substrate reduction, electrons are transferred from Fe-protein to MoFe-protein in an ATP-dependent process. The coupling of ATP hydrolysis to electron transfer is mediated by Fe-protein, which is the only known reductant of MoFe-protein supporting catalytic activity (8). Fe-protein is a dimer of two identical 32kDa subunits, the sequences of which are highly conserved in both conventional and alternate nitrogenases of a diverse group of prokaryotes. The Fe-protein dimer symmetrically binds one 4Fe-4S cluster to Cys 97 and Cys 132 from each subunit (sequence numbering of the Azotobacter vinelandii Fe-protein) (2,4). Unusual aspects of Fe-protein include the ATP-electron transfer coupling and the unique cluster environment, which is unlike any observed in ferredoxin structures. To address the structural basis of these properties, we have determined the crystal structure of the A. vinelandii Fe-protein at 3.0Å resolution. At present, 247 of the 289 residues have been modeled as a poly-alanine chain, and detailed fitting of the actual side chains is in progress. The current model is sufficient to begin addressing questions concerning the overall shape and fold of the protein, the environment of the cluster, the probable nucleotide binding site, the site(s) of interaction with MoFe-protein, and the interactions at the dimer interface.

Keywords

Dime Interface Fold Axis Stereo Pair Terminal Phosphate Cleft Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Deits, T. L. and Howard, J. B. (1989) J. Biol. Chem. 264, 6619–6628.Google Scholar
  2. (2).
    Hausinger, R. P. and Howard, J. B. (1983) J. Biol. Chem. 257, 13468–13492.Google Scholar
  3. (3).
    Hendrickson, W. A. (1985) Methods Enzymol. 115, 252–270.CrossRefGoogle Scholar
  4. (4).
    Howard, J. B., Davis, R., Noldenhauer, B., Cash, V. L., and Dean, D. (1989) J. Biol. Chem. 264, 11270–11274.Google Scholar
  5. (5).
    Meyer, J., Gaillard, J., and Moulis, J.-M.(1988) Biochem. 27, 6150–6156.CrossRefGoogle Scholar
  6. (6).
    Morgan, T. V., McCracken, J., Orme-Johnson, W. H., Mims, W. B., Mortenson, L. E., and Peisach, J. (1990) Biochem. 29, 3077–3082.CrossRefGoogle Scholar
  7. (7).
    Murrell, S. A., Lowery, R. G., and Ludden, P. W. (1988) Biochem. J. 251, 609–612.Google Scholar
  8. (8).
    Orme-Johnson, W. H. (1985) Annu. Rev. Biophys. Biophys. Chem. 14, 419–459.CrossRefGoogle Scholar
  9. (9).
    Pope, M. P., Murell, S. A. and Ludden, P. W. (1985) Proc. Natl. Acad. Sci. USA 82, 3173–3145.CrossRefGoogle Scholar
  10. (10).
    Wang, B. C. (1985) Methods Enzymol. 115, 90–112.CrossRefGoogle Scholar
  11. (11).
    Wierenga, R. K., Terpstra, P., and Hol, W. G. J. (1986) J. Mol. Biol. 187, 101–107.CrossRefGoogle Scholar
  12. (12).
    Willing, A., Georgiadis, M. M., Rees, D. C, and Howard, J. B. (1989) J. Biol. Chem. 264, 8499–8503.Google Scholar
  13. (13).
    Willing, A. and Howard, J. B. (1990) J. Biol. Chem. 265, 6596–6599.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • Millie M. Georgiadis
    • 1
  • Pinak Chakrabarti
    • 1
  • Douglas C. Rees
    • 1
  1. 1.Division of Chemistry 147-75 CHCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations