Pesticide Resistance in Arthropod Natural Enemies: Variability and Selection Responses

  • Marjorie A. Hoy


There are several controversial issues relating to the presence, absence, or degree of resistance to pesticides in arthropod natural enemies. Most of these issues have been extensively reviewed. Therefore, rather than review the reviews, this chapter will briefly review past results and present new information on variability and selection responses obtained from recent research on four natural enemy species. The new data may alter some traditional perceptions of problems associated with detecting naturally occurring pesticide resistances and the likelihood of inducing resistance in arthropod natural enemies through artificial selection, recombinant DNA (rDNA) techniques, or mutagenesis. As throughout this book, pesticide resistance is defined as a genetically induced change in the ability of a population to tolerate pesticides; no minimal level of change in tolerance need occur to be considered resistance by this definition, as long as the measured differences are repeatable and can be estimated in a statistically reliable manner (Chapter 2). The term tolerance will be used to describe the ability of an organism to survive a specific pesticide dose; it does not imply that a genetically determined change has occurred.


Natural Enemy Selection Response Artificial Selection Citrus Orchard Integrate Pest Management Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdelrahman, I.1973. Toxicity of malathion to the natural enemies of California red scale, Aonidiella aurantii (Mask.) (Hemiptera: Diaspididae). Australian J. Agric. Res. 24: 119–133.CrossRefGoogle Scholar
  2. Adams, C. H., and W. H. Cross. 1967. Insecticide resistance in Bracon mellitor, a parasite of the boll weevil. J. Econ. Entomol. 60: 1016–1020.Google Scholar
  3. Atallah, Y. H., and L. D. Newsom. 1966. Ecological and nutritional studies on Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae). HI. The effect of DDT, toxaphene, and endrin on the reproductive and survival potentials. J. Econ. Entomol. 59: 1181–1187.Google Scholar
  4. Atkins, E. L., Jr., and L. D. Anderson. 1962. DDT resistance in honey bees. J. Econ. Entomol. 55: 791–792.Google Scholar
  5. Avella, M., D. Fournier, M. Pralavorio, and J. P. Berge. 1985. Selection pour la resistance a la deltamethrine d’une souche de Phytoseiulus persimilis Athias-Henriot. Agronomie 5: 177–180.CrossRefGoogle Scholar
  6. Bartlett, B. R. 1964. Integration of chemical and biological control, pp. 489–514. In P. DeBach (ed.), Biological control of insect pests and weeds. Reinhold, New York.Google Scholar
  7. Beckendorf, S. K., and M. A. Hoy. 1985. Genetic improvement of arthropod natural enemies through selection, hybridization or genetic engineering techniques, pp. 167–187. In M. A. Hoy and D. C. Herzog (eds.), Biological control in agricultural IPM systems. Academic Press, Orlando.Google Scholar
  8. Bellows, T. S., Jr., and J. G. Morse. 1988. Residual toxicity following dilute or low volume applications of insecticides used for control of California red scale (Homoptera: Diaspididae) to four beneficial species in a citrus agroecosystem. J. Econ. Entomol. 81: 892–898.Google Scholar
  9. Bigler, F. 1984. Biological control by chrysopids: integration with pesticides, pp. 233–245. In M. Canard, Y. Semeria, and T. R. New (eds.), Biology of Chrysopidae. Junk, The Hague.Google Scholar
  10. Brown, A. W. A. 1977. Considerations of natural enemy susceptibility and developed resistance in the light of the general resistance problem. Z. Pflanzenkr. Pflanzensch. 84: 132–139.Google Scholar
  11. Buchi, R. 1981. Evidence that resistance against pyrethroids in aphids Myzus persicae and Phorodon hamuli is not correlated with high carboxylesterase activity. Z. Pflanzenkr. Pflanzensch. 88: 631–634.Google Scholar
  12. Croft, B. A. 1972. Resistant natural enemies in pest management systems. Span 15: 19–21.Google Scholar
  13. Croft, B. A. 1977. Resistance in arthropod predators and parasites, pp. 377–393. In D. L. Watson and A. W. A. Brown (eds.), Pesticide management and insecticide resistance. Academic, New York.Google Scholar
  14. Croft, B. A. 1990. Arthropod biological control agents and pesticides. Wiley, New York.Google Scholar
  15. Croft, B. A., and A. W. A. Brown. 1975. Responses of arthropod natural enemies to insecticides. Annu. Rev. Entomol. 20: 285–335.PubMedCrossRefGoogle Scholar
  16. Croft, B. A., and L. R. Jeppson. 1970. Comparative studies on four strains of Typhlodromus occidentalis. II. Laboratory toxicity of ten compounds common to apple pest control. J. Econ. Entomol. 63: 1528–1531.Google Scholar
  17. Croft, B. A., and R. H. Meyer. 1973. Carbamate and organophosphonis resistance patterns in populations of Amblyseius fallacis. Environ. Entomol. 2: 691–695.Google Scholar
  18. Croft, B. A., and J. G. Morse. 1979. Recent advances on pesticide resistance in natural enemies. Entomophaga 24: 3–11.CrossRefGoogle Scholar
  19. Croft, B. A., and C. A. Mullin. 1984. Comparison of detoxification enzyme systems in Argyrotaenia citrana (Lepidoptera: Tortricidae) and the ectoparasite, Oncophanes americanus (Hymenoptera: Braconidae). Environ. Entomol. 13: 1330–1335.Google Scholar
  20. Croft, B. A., and Strickler. 1983. Natural enemy resistance to pesticides: documentation, characterization, theory and application, pp. 669–702. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.Google Scholar
  21. Croft, B. A., and M. E. Whalon. 1982. Selective toxicity of pyrethroid insecticides to arthropod natural enemies and pests of agricultural crops. Entomophaga 27: 3–21.CrossRefGoogle Scholar
  22. Delorme, R., A. Angot, and D. Auge. 1984. Variations de sensibilité d’Encarsia formosa Gahan (Hym. Aphelinidae) soumis a des pressions de selection insecticide: approches biologique et biochimique. Agronomie 4: 305–309.CrossRefGoogle Scholar
  23. de Monies, G. J., J. G. McMurtry, and H. A. A. Denmark. 1986. A catalog of the mite family Phytoseiidae. Embrapa, Brasil.Google Scholar
  24. Hemer, J. L., B. Lighthart, and B. A. Croft. 1986. The effects of microbial pesticides on non-target, beneficial arthropods. Agric. Ecosyst. Environ. 16: 203–254.CrossRefGoogle Scholar
  25. Founder, D., M. Pralavorio, J. B. Berge, and A. Cuany. 1986. Pesticide resistance in Phytoseiidae, pp. 423–432. In W. Helle and M. W. Sabelis (eds.), Spider mites, their biology, natural enemies and control. Vol. IB. Elsevier, Amsterdam.Google Scholar
  26. Franz, J. M. 1974. Testing of side-effects of pesticides on beneficial arthropods in laboratory—a review (in German). Z. Pflanzenkr. Pflanzensch. 81: 141–174.Google Scholar
  27. Fraser, B. D., and R. van den Bosch. 1973. Biological control of the walnut aphid in California: the interrelationship of the aphid and its parasite. Environ. Entomol. 2: 561–568.Google Scholar
  28. Grafton-Cardwell, E. E., and M. A. Hoy. 1985a. Intraspecific variability in response to pesticides in the common green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Hilgardia 53(6): 1–32.Google Scholar
  29. Grafton-Cardwell, E. E., and M. A. Hoy. 1985b. Short-term effects of permethrin and fenvalerate on oviposition by Chrysoperla carnea (Neuroptera: Chrysopidae). J. Econ. Entomol. 78: 955–959.Google Scholar
  30. Grafton-Cardwell, E. E., and M. A. Hoy. 1986. Genetic improvement of common green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae): selection for carbaryl resistance. Environ. Entomol. 15: 1130–1136.Google Scholar
  31. Graur, D. 1985. Gene diversity in Hymenoptera. Evolution 39: 190–199.CrossRefGoogle Scholar
  32. Hassan, S. A., et al. 1983. Results of the second joint pesticide testing programme by the IOBC/ WPRS Working Group “Pesticides and Beneficial Arthropods”. Z. Angew. Entomol. 95: 151–158.CrossRefGoogle Scholar
  33. Havron, A. 1983. Studies toward selection of Aphytis wasps for pesticide resistance. Ph.D. Thesis, Hebrew University of Jerusalem.Google Scholar
  34. Hoy, M. A. 1979. The potential for genetic improvement of predators for pest management programs, pp. 106–115. In M. A. Hoy and J. M. McKelvey, Jr. (eds.), Genetics in relation to insect management. Rockefeller Foundation Press, New York.Google Scholar
  35. Hoy, M. A. 1982a. Genetics and genetic improvement of the Phytoseiidae, pp. 72–89. In M. A. Hoy (ed.), Recent advances in knowledge of the Phytoseiidae. University of California Special Publication 3284, Division of Agricultural Sciences, Berkeley.Google Scholar
  36. Hoy, M. A. 1982b. Aerial dispersal and field efficacy of a genetically improved strain of the spider mite predator Metaseiidus occidentalis. Entomol. Exp. Appl. 32: 205–212.CrossRefGoogle Scholar
  37. Hoy, M. A. 1985a. Recent advances in genetics and genetic improvement of the Phytoseiidae. Annu. Rev. Entomol. 30:345–370.CrossRefGoogle Scholar
  38. Hoy, M. A. 1985b. Almonds (California); integrated mite management for California almond orchards, pp. 299–310. In W. Helle and M. W. Sabelis (eds.), Spider mites, their biology, natural enemies and control. Vol. IB. Elsevier, Amsterdam.Google Scholar
  39. Hoy, M. A. 1987. Developing insecticide resistance in insect and mite predators and opportunities for gene transfer, pp. 125–138. In H. LeBaron, R. O. Mumma, R. C. Honeycutt, and J. H. Duesing (eds.), Biotechnology in Agricultural Chemistry. American Chemical Society Series No. 334, Washington, D.C.CrossRefGoogle Scholar
  40. Hoy, M. A., and F. E. Cave. 1988. Guthion-resistant strain of walnut aphid parasite. Calif. Agric. 42(4): 4–5.Google Scholar
  41. Hoy, M. A., and F. E. Cave. 1989. Toxicity of pesticides used on walnuts to a wild and azinphosmeth-yl-resistant strain of Trioxys pallidus (Hymenoptera: Aphidiidae). J. Econ. Entomol. 82: 1585–1592.Google Scholar
  42. Hoy, M. A., and J. Conley. 1987. Toxicity of pesticides to western predatory mite, Calif. Agric. 41(7–8), 12–14.Google Scholar
  43. Hoy, M. A., and N. F. Knop. 1979. Studies on pesticide resistance in the phytoseiid Metaseiulus occidentalis in California, pp. 89–94. In J. Rodriguez (ed.), Recent advances in acarology, Vol. I. Academic, New York.Google Scholar
  44. Hoy, M. A., and N. F. Knop. 1981. Selection for and genetic analysis of permethrin resistance in Metaseiulus occidentalis: genetic improvement of a biological control agent. Entomol. Exp. Appl. 30: 10–18.CrossRefGoogle Scholar
  45. Hoy, M. A., and Y. L. Ouyang. 1989. Selection of the western predatory mite, Metaseiulus occidentalis (Acari: Phytoseiidae), for resistance to abamectin. J. Econ. Entomol. 82: 35–40.Google Scholar
  46. Hoy, M. A., and K. A. Standow. 1982. Inheritance of resistance to sulfur in the spider mite predator Metaseiulus occidentalis. Entomol. Exp. Appl. 31: 316–323.CrossRefGoogle Scholar
  47. Hoy, M. A., J. J. R. Groot, and H. E. van de Baan. 1985. Influence of aerial dispersal on persistence and spread of pesticide-resistant Metaseiulus occidentalis in California almond orchards. Entomol. Exp. Appl. 37: 17–31.CrossRefGoogle Scholar
  48. Hoy, M. A., F. E. Cave, R. H. Beede, J. Grant, W. H. Krueger, W. H. Olson, K. M. Spollen, W. W. Barnett, and L. C. Hendricks. 1990. Release, dispersal, and recovery of a laboratoryselected strain of the walnut aphid parasite Trioxys pallidus (Hymenoptera: Aphidiidae) resistant to azinphosmethyl. J. Econ. Entomol. 83: 89–96.Google Scholar
  49. Hoyt, S. C. 1969. Integrated chemical control of insects and biological control of mites on apple in Washington. J. Econ. Entomol. 62: 74–86.Google Scholar
  50. Huang, M. D., J. J. Xiong, and T. Y. Du. 1987. The selection for and genetical analysis of phosmet resistance in Amblyseius nicholsi. Acta Entomol. Sinica 30: 133–139.Google Scholar
  51. Huffaker, C. B. 1971. The ecology of pesticide interference with insect populations, pp. 92–104. In J. E. Swift (ed.), Agricultural chemicals—harmony or discord for food, people and the environment. University of California Division of Agricultural Sciences, Berkeley.Google Scholar
  52. Huffaker, C. B., and C. E. Kennett. 1953. Differential tolerance to parathion of two Typhlodromus predatory on cyclamen mite. J. Econ. Entomol. 46: 707–708.Google Scholar
  53. Hull, L. A., and E. H. Beers. 1985. Ecological selectivity: modifying chemical control practices to preserve natural enemies, pp. 103–121. In M. A. Hoy and D. C. Herzog (eds.), Biological control in agricultural IPM systems. Academic Press, Orlando.Google Scholar
  54. Ishaaya, I., and J. E. Casida. 1981. Pyrethroid esterase(s) may contribute to natural pyrethroid tolerance of larvae of the common green lacewing (Chrysopa cornea). Environ. Entomol. 10:681–684.Google Scholar
  55. Kikkawa, H. 1964. Genetical studies on the resistance to parathion in Drosophila melanogaster. II. Induction of a resistance gene from its susceptible allele. Botyu-Kagaku 29: 37–42.Google Scholar
  56. Mansour, F. 1984. A malathion-tolerant strain of the spider Chiracanthium mildei and its response to chlorpyrifos. Phytoparasitica, 12(3–4): 163–166.CrossRefGoogle Scholar
  57. Markwick, N. P. 1986. Detecting variability and selecting for pesticide resistance in two species of phytoseiid mites. Entomophaga 31:225–236.CrossRefGoogle Scholar
  58. Mullin, C. A., and B. A. Croft. 1985. An update on development of selective pesticides favoring arthropod natural enemies, pp. 123–150. In M. A. Hoy and D. C. Herzog (eds.), Biological control in agricultural IPM systems. Academic Press, Orlando.Google Scholar
  59. Newsom, L. D., R. F. Smith, and W. H. Whitcomb. 1976. Selective pesticides and selective use of pesticides, pp. 565–591. In C. B. Huffaker and P. S. Messenger (eds.), Theory and practice of biological control. Academic Press, New York.Google Scholar
  60. Pielou, D. P., and R. E. Glasser. 1952. Selection for DDT resistance in a beneficial insect parasite. Science 115: 117–118.PubMedCrossRefGoogle Scholar
  61. Plapp, F. W., Jr., and D. L. Bull. 1978. Toxicity and selectivity of some insecticides to Chrysopa cornea, a predator of the tobacco bud worm. Environ. Entomol. 7: 431–434.Google Scholar
  62. Pluthero, F. G., and F. H. Threlkeld. 1984. Mutations in Drosophila melanogaster affecting physiological and behavioral response to malathion. Can. Entomol. 116: 411–418.CrossRefGoogle Scholar
  63. Pree, D. J., D. E. Archibold, and R. K. Morrison. 1989. Resistance to insecticides in the common green lacewing Chrysoperla cornea (Neuroptera: Chrysopidae) in southern Ontario. J. Econ. Entomol. 82: 29–34.Google Scholar
  64. Rajakulendran, S. V., and F. W. Plapp Jr. 1982. Comparative toxicities of five synthetic pyrethroids to the tobacco budworm (Lepidoptera: Noctuidae), an ichneumonid parasite, Campoletis sonoren- sis, and a predator, Chrysopa cornea. J. Econ. Entomol. 75: 769–772.Google Scholar
  65. Ripper, W. E. 1956. Effect of pesticides on balance of arthropod populations. Annu. Rev. Entomol. 1: 403–438.CrossRefGoogle Scholar
  66. Robertson, J. G. 1957. Changes in resistance to DDT in Macrocentrus ancylivorus. Can. J. Zool. 35: 629–633.CrossRefGoogle Scholar
  67. Rosenheim, J. A., and M. A. Hoy. 1986. Intraspecific variation in levels of pesticide resistance in field populations of a parasitoid. Aphytis melinus (Hymenoptera: Aphelinidae): the role of past selection pressures. J. Econ. Entomol. 79: 1161–1173.Google Scholar
  68. Rosenheim, J. A., and M. A. Hoy. 1988. Genetic improvement of a parasitoid biological control agent: Artificial selection for insecticide resistance in Aphytis melinus (Hymenoptera: Aphelinidae). J. Econ. Entomol. 81: 1539–1550.Google Scholar
  69. Roush, R. T. 1979. Genetic improvement of parasitoids, pp. 97–105. In M. A. Hoy and J. J. McKelvey, Jr. (eds.), Genetics in relation to insect management. Rockefeller Foundation Press, New York.Google Scholar
  70. Roush, R. T., and M. A. Hoy. 1981. Genetic improvement of Metaseiulus occidentalis: selection with methomyl, dimethoate, and carbaryl and genetic analysis of carbaryl resistance. J. Econ. Entomol. 74: 138–141.Google Scholar
  71. Roush, R. T., and F. W. Plapp. 1982. Biochemical genetics of resistance to aryl carbamate insecticides in the predaceous mite, Metaseiulus occidentalis. J. Econ. Entomol. 75: 304–307.Google Scholar
  72. Schlinger, E. I., K. S. Hagen, and R. van den Bosch. 1960. Imported French parasite of walnut aphid established in California. Calif. Agric. 14(11): 3–4.Google Scholar
  73. Schoonees, J., and J. H. Giliomee. 1982. The toxicity of methidathion to parasitoids of red scale, Aonidiella aurantii (Hemiptera: Diaspididae). J. Entomol. Soc. South Africa 45: 261–273.Google Scholar
  74. Shour, M. H., and L. A. Crowder. 1980. Effects of pyrethroid insecticides on the common green lacewing. J. Econ. Entomol. 73: 306–309.Google Scholar
  75. Sibbett, G. S., L. Bettiga, and M. Bailey. 1981. Impact of summer infestation of walnut aphid on quality. Sun-Diamond Grower June-July: 8.Google Scholar
  76. Smirle, M. J., and M. L. Winston. 1987. Intercolony variation in pesticide detoxification by the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 80: 5–8.Google Scholar
  77. Stern, V. M., R. F. Smith, R. van den Bosch, and K. S. Hagen. 1959. The integration of chemical and biological control of the spotted alfalfa aphid. Hilgardia 29: 81–101.Google Scholar
  78. Strawn, A. J. 1978. Differences in response to four organophosphates in the laboratory of strains of Aphytis melinus and Compendia bifasciata from citrus groves with different pesticide histories, M.S. thesis, University of California, Riverside.Google Scholar
  79. Strickler, K. A., and B. A. Croft. 1982. Selection for permethrin resistance in the predatory mite, Amblyseius fallacis Garman (Acarina: Phytoseiidae). Entomol. Exp. Appl. 31: 339–345.CrossRefGoogle Scholar
  80. Sun, Y. P. 1966. Correlation between laboratory and field data on testing insecticides. J. Econ. Entomol. 59: 1131–1134.Google Scholar
  81. Tabashnik, B. E., and B. A. Croft. 1985. Evolution of pesticide resistance in apple pests and their natural enemies. Entomophaga 30: 37–49.CrossRefGoogle Scholar
  82. Tahori, A. S., Z. Sobel, and M. Soller. 1969. Variability in insecticide tolerance of eighteen honeybee colonies. Entomol. Exp. Appl., 12: 85–98.CrossRefGoogle Scholar
  83. Theiling, K. M. 1987. SELCTV: a database management system on the effects of pesticides on arthropod natural enemies, M.S. thesis, Oregon State University, Corvallis.Google Scholar
  84. Theiling, K. M., and B. A. Croft. 1988. Pesticide effects on arthropod natural enemies: a database summary. Agric. Ecosyst. Environ. 21: 191–218.CrossRefGoogle Scholar
  85. Tucker, K. W. 1980. Tolerance to carbaryl in honey bees increased by selection. Am. Bee J. January: 36–46.Google Scholar
  86. van den Bosch, R., and V. M. Stern. 1962. The integration of chemical and biological control of arthropod pests, Annu. Rev. Entomol. 7:367–386.CrossRefGoogle Scholar
  87. van den Bosch, R., E. I. Schlinger, and K. S. Hagen. 1962. Initial field observations in Californiaon Trioxys pallidus (Haliday), a recently introduced parasite of the walnut aphid. J. Econ. Entomol. 55:857–862.Google Scholar
  88. van den Bosch, R., R. Horn, P. Matteson, B. D. Frazer, P. S. Messenger, and C. S. Davis. 1979. Biological control of the walnut aphid in California: impact of the parasite, Trioxys pallidus. Hilgardia 47: 1–13.Google Scholar
  89. Wilson, T. G., and J. Fabian. 1987. Selection of methoprene-resistant mutants of Drosophila melanogaster, pp. 179–188. In J. Law (ed.), Molecular Entomology, UCLA Symposium on Molecular and Cell Biology, new series, no. 49.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • Marjorie A. Hoy

There are no affiliations available

Personalised recommendations