Skip to main content

Modeling and Evaluation of Resistance Management Tactics

  • Chapter
Pesticide Resistance in Arthropods

Abstract

Pest resistance to insecticides is a serious worldwide problem. Resistance to one or more pesticides has been documented in more than 440 insect and mite species, with costs of resistance estimated conservatively at $1 billion yearly (Georghiou 1986). Resistance management seeks to slow, prevent, or reverse the evolution of resistance in pests. A secondary goal of resistance management is to promote evolution of resistance in beneficial species, such as natural enemies (see Chapters 8 and 11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beeman, R. W., and S. M. Nanis. 1986. Malathion resistance alleles and their fitness in the red flour beetle (Coleoptera: Tenebrionidae). J. Econ. Entomol. 79: 580–587.

    CAS  Google Scholar 

  • Brown, A. W. A. 1977. Epilogue: resistance as a factor in pesticide management, pp. 816–824. In Proceedings, XV International Congress of Entomology. Entomological Society of America. College Park, Md.

    Google Scholar 

  • Burden, G. S., C. S. Lofgren, and C. N. Smith. 1960. Development of chlordane and malathion resistance in the German cockroach. J. Econ. Entomol. 53: 1138–1139.

    Google Scholar 

  • Byford, R. L., J. A. Lockwood, and T. C. Sparks. 1987. A novel resistance management strategy for horn flies (Diptera: Muscidae). J. Econ. Entomol. 80: 291–296.

    PubMed  CAS  Google Scholar 

  • Cheng, E. Y. 1988. Problems of control of insecticide-resistant Plutella xylostella Pestic. Sci. 23: 177–188.

    Article  CAS  Google Scholar 

  • Clark, G. M., and J. A. McKenzie. 1987. Developmental stability of insecticide resistant phenotypes in blowfly; a result of canalizing natural selection. Nature 325: 345–346.

    Article  Google Scholar 

  • Contins, H. N. 1977a. The development of insecticide resistance in the presence of immigration. J. Theor. Biol. 64: 177–197.

    Article  Google Scholar 

  • Contins, H. N. 1977b. The management of pesticide resistance. J. Theor. Biol. 65: 399–420.

    Article  Google Scholar 

  • Comins, H. N. 1979. Analytic methods for the management of pesticide resistance. J. Theor. Biol. 77: 171–188.

    Article  PubMed  CAS  Google Scholar 

  • Comins, H. N. 1979b. The management of pesticide resistance: models, pp. 55–69. In M. A. Hoy and J. J. McKelvey Jr. (eds.), Genetics in relation to insect management. Rockefeller Foundation, New York.

    Google Scholar 

  • Comins, H. N. 1979c. The control of adaptable pests, pp. 217–226. In G. A. Norton and C. S. Holling (eds.), Pest management: proceedings of an international conference. Oxford. Pergamon, Oxford.

    Google Scholar 

  • Comins, H. N. 1986. Tactics for resistance management using multiple pesticides. Agric. Ecosystems Environ. 16: 129–148.

    Article  Google Scholar 

  • Cook, L. M. 1981. The ecological factor in assessment of resistance in pest populations. Pestic. Sci. 12: 582–586.

    Article  Google Scholar 

  • Croft, B. A. 1982. Arthropod resistance to insecticides: a key to pest control failures and successesin North American apple orchards. Entomol. Exp. Appl. 3: 88–110.

    Article  Google Scholar 

  • Croft, B. A., and A. W. A. Brown. 1985. Responses of arthropod natural enemies to insecticides. Annu. Rev. Entomol. 20: 285–335.

    Article  Google Scholar 

  • Croft, B. A., and J. G. Morse. 1979. Recent advances in natural-enemy pesticide research. Entomophaga 24: 3–11.

    Article  Google Scholar 

  • Croft, B. A., and K. Strickler. 1983. Natural enemy resistance to pesticides: documentation, characterization, theory and application, pp. 669–702. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.

    Chapter  Google Scholar 

  • Croft, B. A., E. C. Burts, H. E. van de Baan, P. H. Westigard, and H. W. Riedl. 1989. Local and regional resistance to fenvalerate in Psylla pyricola Foerster (Homoptera: Psyllidae) in western North America. Can. Entomol. 121: 121–129.

    Article  CAS  Google Scholar 

  • Crow, J. F. 1952. Some genetic aspects of selection for resistance. National Res. Council Publ. 219: 72–75.

    Google Scholar 

  • Curtis, C. F. 1981. Possible methods of inhibiting or reversing the evolution of insecticide resistance in mosquitoes. Pestic. Sci. 12: 557–564.

    Article  CAS  Google Scholar 

  • Curtis, C. F. 1985. Theoretical models of the use of insecticide mixtures for the management of resistance. Bull. Entomol. Res. 75: 259–265.

    Article  CAS  Google Scholar 

  • Curtis, C. F. 1987. Genetic aspects for selection for resistance, pp. 150–161. In M. G. Ford, D. W. Hollman, B. P. S. Khambay, and R. M. Sawicki (eds.), Combating resistance to xenobiotics: biological and chemical approaches. Horwood, Chichester, England.

    Google Scholar 

  • Curtis, C. F., L. M. Cook and R. J. Wood. 1978. Selection for and against insecticide resistance and possible methods of inhibiting the evolution of resistance in mosquitoes. Ecol. Entomol. 3: 273–287.

    Article  Google Scholar 

  • Denholm, I., A. W. Farnham, K. O’Dell, and R. M. Sawicki. 1983. Factors affecting resistance to insecticides in house-flies, Musca domestica L. (Diptera: Muscidae). I. Long-term control with bioresmethrin of flies with strong pyrethroid-resistance potential. Bull. Entomol. Res. 73:481–489.

    Article  CAS  Google Scholar 

  • Denholm, I., R. M. Sawicki, and A. W. Famham. 1985. Factors affecting resistance to insecticides in house-flies, Musca domestica L. (Diptera: Muscidae). IV. The population biology of flies on animal farms in south-eastern England and its implications for the management of resistance. Bull. Entomol. Res. 75: 143–158.

    Article  Google Scholar 

  • Denholm, I., R. M. Sawicki, and A. W. Famham. 1987. Laboratory simulation of selection for resistance, pp. 138–149. In M. G. Ford, D. W. Holloman, B. P. S. Khambay and R. M. Sawicki (eds.), Combating resistance to xenobiotics: biological and chemical approaches. Horwood, Chichester, England.

    Google Scholar 

  • Dover, M. J., B. A. Croft, S. M. Welch, and R. L. Tummala. 1979. Biological control of Panonychus ulmi (Acarina: Teranychidae) by Amblyseiusfallacis (Acarina: Phytoseiidae) on apple: a prey-predator model. Environ. Entomol. 8: 282–292.

    Google Scholar 

  • Dowd, P. F., T. C. Sparks, and F. L. Mitchell. 1984. A microcomputer simulation program for demonstrating the development of insecticide resistance. Bull. Entomol. Soc. Am. 30: 37–41.

    Google Scholar 

  • Falconer, D. S. 1981. Introduction to quantitative genetics, 2nd ed. Longman, London.

    Google Scholar 

  • Fournier, D., M. Pralavario, A. Cuany and J. Berge. 1988. Genetic analysis of methidathion resistance in Phytoseiulus persimilis (Acari: Phytosiidae). J. Econ. Entomol. 81: 1008–1013.

    CAS  Google Scholar 

  • Georghiou, G. P. 1972. The evolution of resistance to pesticides. Annu. Rev. Ecol. Syst. 3:133–168.

    Article  CAS  Google Scholar 

  • Georghiou, G. P. 1980. Insecticide resistance and prospects for its management. Residue Rev. 76: 131–145.

    CAS  Google Scholar 

  • Georghiou, G. P. 1983. Management of resistance in arthropods, pp. 769–792. In G. P. Georghiou and T. Saito (eds), Pest resistance to pesticides. Plenum, New York.

    Chapter  Google Scholar 

  • Georghiou, G. P. 1986. The magnitude of the resistance problem, pp. 14–43. In Pesticide resistance: strategies and tactics for management. National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Georghiou, G. P., and C. E. Taylor. 1977a. Genetic and biological influences in the evolution of insecticide resistance. J. Econ. Entomol. 70: 319–323.

    PubMed  CAS  Google Scholar 

  • Georghiou, G. P., and C. E. Taylor. 1977b. Operational influences in the evolution of insecticide resistance. J. Econ. Entomol. 70: 653–658.

    PubMed  CAS  Google Scholar 

  • Georghiou, G. P., and C. E. Taylor. 1986. Factors influencing the evolution of resistance, pp. 157–169. In Pesticide resistance: strategies and tactics for management. National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Georghiou, G. P., R. B. March, and G. E. Printy. 1963. A study on the genetics of dieldrin-resistance in the housefly (Musca domestica L.). Bull. WHO 29: 155–165.

    PubMed  CAS  Google Scholar 

  • Georghiou, G. P., A. Lagunes, and J. D. Baker. 1983. Effect of insecticide rotations on evolution of resistance, pp. 183–189. In J. Miyamoto (ed.), IUPAC pesticide chemistry, human welfare and the environment, Pergamon, Oxford.

    Google Scholar 

  • Greever, J., and G. P. Georghiou. 1979. Computer simulations of control strategies for Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 16: 180–188.

    PubMed  CAS  Google Scholar 

  • Guttierez, A. P., U. Regev, and H. Shalet. 1979. An economic optimization model of pesticide resistance: alfalfa and Egyptian alfalfa weevil—an example. Environ. Entomol. 8: 101–107.

    Google Scholar 

  • Guttierez, A. P., U. Regev, and C. G. Summers. 1976. Computer model aids in weevil control. Calif. Agric. April: 8–9.

    Google Scholar 

  • Haliscak, J. P., and R. W. Beeman. 1983. Status of malathion resistance in five genera of beetles infesting farm-stored corn, wheat, and oats in the United States. J. Econ. Entomol. 76: 717–722.

    CAS  Google Scholar 

  • Halliday, W. R., and G. P. Georghiou. 1985. Inheritance of resistance to permethrin and DDT in the southern house mosquito (Diptera: Culicidae). J. Econ. Entomol. 78: 762–767.

    CAS  Google Scholar 

  • Horn, D. J., and R. W. Wadleigh. 1988. Resistance of aphid natural enemies to insecticides, pp. 337–347. In A. K. Minks and P. Harrewijn (eds.), Aphids, their biology, natural enemies, and control, Vol. B. Elsevier, Amsterdam.

    Google Scholar 

  • Hoy, M. A. 1985. Recent advances in genetics and genetic improvement of the Phytoseiidae. Annu. Rev. Entomol. 30: 345–370.

    Article  Google Scholar 

  • Hueth, D., and U. Regev. 1974. Optimal agricultural pest management with increasing pest resistance. Am. J. Agric. Econ. 56: 543–552.

    Article  Google Scholar 

  • Huffaker, C. B. 1971. The ecology of pesticide interference with insect populations, pp. 92–107. In J. E. Swift (ed.), Agricultural chemicals—harmony or discord for food, people, and the environment. Univ. Calif. Div. Agric. Sci. Public, Berkeley.

    Google Scholar 

  • Imai, C. 1987. Control of insecticide resistance in a field population of houseflies, Musca domestica, by releasing susceptible flies. Res. Popul. Ecol. 29: 129–146.

    Article  Google Scholar 

  • Johnson, M. W., and B. E. Tabashnik. 1990. Enhanced biological control through pesticide selectivity. In T. W. Fisher et al. (eds.), Principles and application of biological control. University of California Press, Berkeley (in press).

    Google Scholar 

  • Knight, A. L., and G. W. Norton. 1989. Economics of agricultural pesticide resistance in arthropods. Annu. Rev. Entomol. 34: 293–313.

    Article  Google Scholar 

  • Knipling, E. F., and W. Klassen. 1984. Influence of insecticide use patterns on the development of resistance to insecticides—a theoretical study. Southwest. Entomol. 9: 351–368.

    Google Scholar 

  • Lande, R. 1983. The response to selection on major and minor mutations affecting a metrical trait. Heredity 50: 47–65.

    Article  Google Scholar 

  • Lazarus, W. F., and B. F. Dixon. 1984. Agricultural pests as common property: control of the corn rootworm. Am. J. Agric. Econ. 66: 456–465.

    Article  Google Scholar 

  • Leeper, J. R., R. T. Roush, and H. T. Reynolds. 1986. Preventing or managing resistance in arthropods, pp. 335–346. In Pesticide resistance: strategies and tactics for management. National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Lenski, R. E. 1988a. Experimental studies of pleiotropy and epistasis in Escherichia coli I. Variation in competitive fitness among mutants resistant to virus T4. Evolution 42: 425–432.

    Article  Google Scholar 

  • Lenski, R. E. 1988b. Experimental studies of pleiotropy and epistasis in Escherichia coli. U Compensation for maladaptive effects associated with resistance to virus T4. Evolution 42:433–440.

    Article  Google Scholar 

  • Levin, B. R., J. A. Barrett, E. C. Craze, A. P. Dobson, F. Gould, J. H. Greaves, D. Heckel, R. M. May, H. T. Reynolds, R. T. Roush, B. E. Tabashnik, M. Uyenoyama, S. Via, M. J. Whitten, and M. S. Wolfe. 1986. Population biology of pesticide resistance: bridging the gap between theory and practical applications, pp. 143–156. In Pesticide resistance: strategies and tactics for management. National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Lichtenburg, E., and D. Zilberman. 1986. The econometrics of damage control: why specification matters. Am. J. Agric. Econ. 68: 261–273.

    Article  Google Scholar 

  • Liu, M. Y., Y. J. Tseng, and C. N. Sun. 1981. Diamondback moth resistance to several synthetic pyrethroids. J. Econ. Entomol. 74: 393–3%.

    CAS  Google Scholar 

  • Longstaff, B. C. 1988. Temperature manipulation and the management of insecticide resistance in stored grain pests: a simulation study for the rice weevil, Sitophilus oryzae Ecol. Modelling 43: 303–313.

    Article  CAS  Google Scholar 

  • MacDonald, G. 1959. The dynamics of resistance to insecticides by anophelines. Riv. Parassitol. 20: 305–315.

    Google Scholar 

  • MacDonald, R. S., G. A. Surgeoner, K. R. Solomon, and C. R. Harris. 1983a. Effect of four spray regimes on the development of permethrin and dichlorvos resistance in the laboratory by the house fly (Diptera: Muscidae). J. Econ. Entomol. 76: 417–422.

    PubMed  CAS  Google Scholar 

  • MacDonald, R. S., G. A. Surgeoner, K. R. Solomon, and C. R. Harris. 1983b. Development of resistance to permethrin and dichlorvos by the house fly (Diptera: Muscidae) following continuous and alternating insecticide use on four farms. Can. Entomol. 115: 1555–1561.

    Article  CAS  Google Scholar 

  • Mangel, M., and R. E. Plant. 1983. Multiseasonal management of an agricultural pest. I. Development of the theory. Ecol. Modelling 20: 1–19.

    Article  Google Scholar 

  • Mani, G. S. 1985. Evolution of resistance in the presence of two insecticides. Genetics 109: 761–783.

    PubMed  CAS  Google Scholar 

  • Mani, G. S., and R. J. Wood. 1984. Persistence and frequency of application of an insecticide in relation to the rate of evolution of resistance. Pestic. Sci. 15. 325–336.

    Article  CAS  Google Scholar 

  • Mason, G. A., B. E. Tabashnik, and M. W. Johnson. 1989. Effects of biological and operational factors on evolution of insecticide resistance in Liriomyza (Diptera: Agromyzidae). J. Econ. Entomol. 82: 369–373.

    Google Scholar 

  • Maudlin, I., C. H. Green, and F. Barlow. 1981. The potential for insecticide resistance in Glossina (Diptera: Glossinidae)—an investigation by computer simulation and chemical analysis. Bull. Entomol. Res. 71: 691–702.

    Article  Google Scholar 

  • May, R. M., and A. P. Dobson. 1986. Population dynamics and the rate of evolution of pesticide resistance, pp. 170–193. In Pesticide resistance: strategies and tactics for management. National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • McKenzie, J. A., M. J. Whitten, and M. A. Adena. 1982. The effect of genetic background on the fitness of diazinon resistance genotypes of the Australian sheep blowfly, Lucilia cuprina Heredity 49: 1–9.

    Article  Google Scholar 

  • Muggleton, J. 1982. A model for the elimination of insecticide resistance using heterozygous disadvantage. Heredity 49: 247–251.

    Article  Google Scholar 

  • Muggleton, J. 1986. Selection for malathion resistance in Oryzaephilus surinamensis (L) (Coleoptera:Silvanidae): fitness values of resistant and susceptible phenotypes and their inclusion in a general model describing the spread of resistance. Bull. Entomol. Res. 76: 469–480.

    Article  Google Scholar 

  • Oppenoorth, F. J. 1985. Biochemistry and genetics of insecticide resistance, pp. 731–773. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive insect physiology, biochemistry, and pharmacology, Vol. 12. Pergamon, Oxford.

    Google Scholar 

  • Ozaki, K. 1983. Suppression of resistance through synergistic combinations with emphasis on planthoppers and leafhoppers infesting rice in Japan, pp. 595–613. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.

    Chapter  Google Scholar 

  • Ozburn, G. W., and F. O. Morrison. 1963. The effect of diluting a colony of DDT resistant houseflies with non-resistant houseflies. Phytoprotection 44: 32–36.

    Google Scholar 

  • Pedersen, O. C. 1984. Models of pesticide resistance dynamics. Acta Agric. Scand. 34: 145–152.

    Article  Google Scholar 

  • Pimentel, D., and A. C. Bellotti. 1976. Parasite-host population systems and genetic stability. Am. Nat. 95: 65–79.

    Article  Google Scholar 

  • Pimentel, D., and M. Burgess. 1985. Effects of single versus combinations of insecticides on the development of resistance. Environ. Entomol. 14: 582–589.

    CAS  Google Scholar 

  • Plant, R. E., M. Mangel, and L. E. Flynn. 1985. Multiseasonal management of an agricultural pest H: The economic optimization problem. J. Environ. Econ. Man. 12: 45–61.

    Article  Google Scholar 

  • Plapp, F. W., Jr., C. R. Browning, and P. J. H. Sharpe. 1979. Analysis of rate of development of insecticide resistance based on simulation of a genetic model. Environ. Entomol. 8: 494–500.

    CAS  Google Scholar 

  • Prasittisuk, C., and C. F. Curtis. 1982. Further study of DDT resistance m Anopheles gambiae Giles (Diptera: Culicidae) and a cage test of elimination of resistance from a population by male release. Bull. Entomol. Res. 72: 335–344.

    Article  Google Scholar 

  • Pree, D. J. 1987. Inheritance and management of cyhexatin and difocol resistance in the European red mite (Acari: Tetranychidae). J. Econ. Entomol. 80: 1106–1112.

    CAS  Google Scholar 

  • Rawlings, P., and G. Davidson. 1982. The dispersal and survival of Anopheles culicifacies Giles (Diptera: Culicidae) in a Sri Lankan village under malathion spraying. Bull. Entomol. Res. 72:139–144.

    Article  Google Scholar 

  • Rawlings, P., G. Davidson, R. K. Sakai, H. R. Rathor, M. Aslamkhan, and C. F. Curtis. 1981. Field measurement of the effective dominance of an insecticide resistance in anopheline mosquitos. Bull. WHO 59: 631–640.

    PubMed  CAS  Google Scholar 

  • Raymond, M., N. Pasteur, and G. P. Georghiou. 1987. Inheritance of chlorpyrifos resistance in Culex pipiens L. (Diptera: Culicidae) and estimation of the number of genes involved. Heredity 58: 351–356.

    Article  CAS  Google Scholar 

  • Riddles, P. W., and J. Nolan. 1987. Prospects for the management of arthropod resistance to pesticides. Int. J. Parasitol. 17: 679–688.

    Article  PubMed  CAS  Google Scholar 

  • Rosenheim, J. A., and M. A. Hoy. 1986. Intraspecific variation in levels of pesticide resistance in field populations of a parasitoid, Aphytis melinus (Hymenoptera: Aphelinidae): the role of past selection pressures. J. Econ. Entomol. 79: 1161–1173.

    CAS  Google Scholar 

  • Roush, R. T. 1989. Designing resistance management programs: how can you choose? Pestic. Sci. 26: 423–441.

    Article  CAS  Google Scholar 

  • Roush, R. T., and J. A. McKenzie. 1987. Ecological genetics of insecticide and acaricide resistance. Annu. Rev. Entomol. 32: 361–380.

    Article  PubMed  CAS  Google Scholar 

  • Roush, R. T., R. L. Combs, T. C. Randolph, and J. A. Hawkins. 1986. Inheritance and effective dominance of pyrethroid resistance in the horn fly (Diptera: Muscidae). J. Econ. Entomol. 32: 361–380.

    Google Scholar 

  • Sarhan, M. E., R. E. Howitt, and C. V. Moore. 1979. Pesticide resistance externalities and optimal mosquito management. J. Environ. Econ. Man. 6: 69–84.

    Article  Google Scholar 

  • Sawicki, R. M., and I. Denholm. 1987. Management of resistance to pesticides in cotton pests. Trop. Pest Manag. 33: 262–272.

    Article  Google Scholar 

  • Shoemaker, C. A. 1982. Optimal integrated control of univoltine pest populations with age structure. Oper. Res. 30: 40–61.

    Article  Google Scholar 

  • Sinclair, E. R., and J. Alder. 1985. Development of a computer simulation model of stored product insect populations on grain farms. Agric. Syst. 18: 95–113.

    Article  Google Scholar 

  • Sutherst, R. W., and H. N. Comins. 1979. The management of acaricide resistance in the cattle tick Boophilus microplus (Canestrini) (Acari: Ixodidae), in Australia. Bull. Entomol. Res. 69: 519–537.

    Google Scholar 

  • Tabashnik, B. E. 1986a. Computer simulation as a tool for pesticide resistance management, pp. 194–206. In Pesticide resistance: strategies and tactics for management. National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Tabashnik, B. E. 1986b. Model for managing resistance to fenvalerate in the diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 79: 1147–1451.

    Google Scholar 

  • Tabashnik, B. E. 1986c. Evolution of pesticide resistance in predator-prey systems. Bull. Entomol. Soc. Am. 32: 156–161.

    Google Scholar 

  • Tabashnik, B. E. 1986d. Insect resistance. Science 234: 802.

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik, B. E. 1987. Computer-aided management of insecticide resistance, pp. 215–218. In Proc. 1987 Beltwide Cotton Production Research Conferences, National Cotton Council of America, Memphis.

    Google Scholar 

  • Tabashnik, B. E. 1989. Managing resistance with multiple pesticide tactics: theory, evidence, and recommendations. J. Econ. Entomol. 82: 1263–1269.

    PubMed  CAS  Google Scholar 

  • Tabashnik, B. E., and B. A. Croft. 1982. Managing pesticide resistance in crop-arthropod complexes: interactions between biological and operational factors. Environ. Entomol. 11:1137–1144.

    Google Scholar 

  • Tabashnik, BE., and B. A. Croft. 1985. Evolution of pesticide resistance in apple pests and their natural enemies. Entomophaga 30: 37–49.

    Article  Google Scholar 

  • Tabashnik, B. E., and N. L. Cushing. 1989. Quantitative genetic analysis of insecticide resistance: variation in fenvalerate tolerance in a diamondback moth (Lepidoptera: Plutellidae) population. J. Econ. Entomol. 79: 189–191.

    Google Scholar 

  • Tabashnik, B. E., and M. W. Johnson. 1990. Evolution of pesticide resistance in natural enemies. In T. Fisher et al. (eds.), Principles and application of biological control, University of California Press, Berkeley (in press).

    Google Scholar 

  • Tabashnik, B. E., N. L. Cushing, and M. W. Johnson. 1987. Diamondback moth (Lepidoptera: Plutellidae) resistance to insecticides in Hawaii: intra-island variation and cross-resistance. J. Econ. Entomol. 80: 1091–1099.

    CAS  Google Scholar 

  • Taylor, C. E. 1983. Evolution of resistance to insecticides: the role of mathematical models and computer simulations, pp. 163–173. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.

    Chapter  Google Scholar 

  • Taylor, C. E. 1986. Genetics and evolution of resistance to insecticides. Biol. J. Linn. Soc. 27:103–112.

    Article  Google Scholar 

  • Taylor, C. E. 1989. On the use of more than one insecticide to control resistance: theory and computer simulation (in manuscript).

    Google Scholar 

  • Taylor, C. E., and J. C. Headley. 1975. Insecticide resistance and the evolution of control strategies for an insect population. Can. Entomol. 107: 237–242.

    Article  Google Scholar 

  • Taylor, C. E., and G. P. Georghiou. 1979. Suppression of insecticide resistance by alteration of gene dominance and migration. J. Econ. Entomol. 72: 105–109.

    Google Scholar 

  • Taylor, C. E., and G. P. Georghiou. 1982. Influence of pesticide persistence in evolution of resistance. Environ. Entomol. 11: 746–750.

    CAS  Google Scholar 

  • Taylor, C. E., F. Quaglia, and G. P. Georghiou. 1983. Evolution of resistance to insecticides: a cage study on the influence of immigration and insecticide decay rates. J. Econ. Entomol. 76:704–707.

    CAS  Google Scholar 

  • Uyenoyama, M. K. 1986. Pleiotropy and the evolution of genetic systems conferring resistance to pesticides, pp. 207–221. In Pesticide resistance: strategies and tactics for management. National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Via, S. 1986. Quantitative genetic models and the evolution of pesticide resistance, pp. 222–235. In Pesticide resistance: strategies and tactics for management. National Academy of Sciences, Washington, D.C

    Google Scholar 

  • Waage, J. K., M. P. Hassel, and H. C. J. Godfrey. 1985. The dynamics of pest-parasitoid-insecticide interactions. J. Appl. Ecol. 22: 825–838.

    Google Scholar 

  • Whitten, M. J., and J. A. McKenzie. 1982. The genetic basis for pesticide resistance, pp. 1–16. In K. E. Lee (ed.),. Proc. 3rd Australasian Conf. Grassland Invert. Ecol., South Aust. Gov. Print., Adelaide.

    Google Scholar 

  • Wilson, E. O., and W. H. Bossert. 1971. A primer of population biology. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Wood, R. J. 1981. Insecticide resistance: genes and mechanisms, pp. 53–96. In J. A. Bishop and L. M. Cook (eds.), Genetic consequences of man made change. Academic, New York.

    Google Scholar 

  • Wood, R. J., and G. S. Mani. 1981. The effective dominance of resistance genes in relation to the evolution of resistance. Pestic. Sci. 12: 573–581.

    Article  Google Scholar 

  • Wool, D., and S. Noiman. 1983. Integrated control of insecticide resistance by combined genetic and chemical treatments: a warehouse model with flour beetles (Tribolium; Tenebrionidae, Coleoptera). Z. Agnew. Entomol. 95: 22–30.

    Article  Google Scholar 

Download references

Authors

Editor information

Richard T. Roush Bruce E. Tabashnik

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Routledge, Chapman & Hall, Inc.

About this chapter

Cite this chapter

Tabashnik, B.E. (1990). Modeling and Evaluation of Resistance Management Tactics. In: Roush, R.T., Tabashnik, B.E. (eds) Pesticide Resistance in Arthropods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6429-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6429-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6431-3

  • Online ISBN: 978-1-4684-6429-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics