Advertisement

Modeling and Evaluation of Resistance Management Tactics

  • Bruce E. Tabashnik

Abstract

Pest resistance to insecticides is a serious worldwide problem. Resistance to one or more pesticides has been documented in more than 440 insect and mite species, with costs of resistance estimated conservatively at $1 billion yearly (Georghiou 1986). Resistance management seeks to slow, prevent, or reverse the evolution of resistance in pests. A secondary goal of resistance management is to promote evolution of resistance in beneficial species, such as natural enemies (see Chapters 8 and 11).

Keywords

Natural Enemy Insecticide Resistance Resistance Allele Resistance Development Resistance Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beeman, R. W., and S. M. Nanis. 1986. Malathion resistance alleles and their fitness in the red flour beetle (Coleoptera: Tenebrionidae). J. Econ. Entomol. 79: 580–587.Google Scholar
  2. Brown, A. W. A. 1977. Epilogue: resistance as a factor in pesticide management, pp. 816–824. In Proceedings, XV International Congress of Entomology. Entomological Society of America. College Park, Md.Google Scholar
  3. Burden, G. S., C. S. Lofgren, and C. N. Smith. 1960. Development of chlordane and malathion resistance in the German cockroach. J. Econ. Entomol. 53: 1138–1139.Google Scholar
  4. Byford, R. L., J. A. Lockwood, and T. C. Sparks. 1987. A novel resistance management strategy for horn flies (Diptera: Muscidae). J. Econ. Entomol. 80: 291–296.PubMedGoogle Scholar
  5. Cheng, E. Y. 1988. Problems of control of insecticide-resistant Plutella xylostella Pestic. Sci. 23: 177–188.CrossRefGoogle Scholar
  6. Clark, G. M., and J. A. McKenzie. 1987. Developmental stability of insecticide resistant phenotypes in blowfly; a result of canalizing natural selection. Nature 325: 345–346.CrossRefGoogle Scholar
  7. Contins, H. N. 1977a. The development of insecticide resistance in the presence of immigration. J. Theor. Biol. 64: 177–197.CrossRefGoogle Scholar
  8. Contins, H. N. 1977b. The management of pesticide resistance. J. Theor. Biol. 65: 399–420.CrossRefGoogle Scholar
  9. Comins, H. N. 1979. Analytic methods for the management of pesticide resistance. J. Theor. Biol. 77: 171–188.PubMedCrossRefGoogle Scholar
  10. Comins, H. N. 1979b. The management of pesticide resistance: models, pp. 55–69. In M. A. Hoy and J. J. McKelvey Jr. (eds.), Genetics in relation to insect management. Rockefeller Foundation, New York.Google Scholar
  11. Comins, H. N. 1979c. The control of adaptable pests, pp. 217–226. In G. A. Norton and C. S. Holling (eds.), Pest management: proceedings of an international conference. Oxford. Pergamon, Oxford.Google Scholar
  12. Comins, H. N. 1986. Tactics for resistance management using multiple pesticides. Agric. Ecosystems Environ. 16: 129–148.CrossRefGoogle Scholar
  13. Cook, L. M. 1981. The ecological factor in assessment of resistance in pest populations. Pestic. Sci. 12: 582–586.CrossRefGoogle Scholar
  14. Croft, B. A. 1982. Arthropod resistance to insecticides: a key to pest control failures and successesin North American apple orchards. Entomol. Exp. Appl. 3: 88–110.CrossRefGoogle Scholar
  15. Croft, B. A., and A. W. A. Brown. 1985. Responses of arthropod natural enemies to insecticides. Annu. Rev. Entomol. 20: 285–335.CrossRefGoogle Scholar
  16. Croft, B. A., and J. G. Morse. 1979. Recent advances in natural-enemy pesticide research. Entomophaga 24: 3–11.CrossRefGoogle Scholar
  17. Croft, B. A., and K. Strickler. 1983. Natural enemy resistance to pesticides: documentation, characterization, theory and application, pp. 669–702. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.CrossRefGoogle Scholar
  18. Croft, B. A., E. C. Burts, H. E. van de Baan, P. H. Westigard, and H. W. Riedl. 1989. Local and regional resistance to fenvalerate in Psylla pyricola Foerster (Homoptera: Psyllidae) in western North America. Can. Entomol. 121: 121–129.CrossRefGoogle Scholar
  19. Crow, J. F. 1952. Some genetic aspects of selection for resistance. National Res. Council Publ. 219: 72–75.Google Scholar
  20. Curtis, C. F. 1981. Possible methods of inhibiting or reversing the evolution of insecticide resistance in mosquitoes. Pestic. Sci. 12: 557–564.CrossRefGoogle Scholar
  21. Curtis, C. F. 1985. Theoretical models of the use of insecticide mixtures for the management of resistance. Bull. Entomol. Res. 75: 259–265.CrossRefGoogle Scholar
  22. Curtis, C. F. 1987. Genetic aspects for selection for resistance, pp. 150–161. In M. G. Ford, D. W. Hollman, B. P. S. Khambay, and R. M. Sawicki (eds.), Combating resistance to xenobiotics: biological and chemical approaches. Horwood, Chichester, England.Google Scholar
  23. Curtis, C. F., L. M. Cook and R. J. Wood. 1978. Selection for and against insecticide resistance and possible methods of inhibiting the evolution of resistance in mosquitoes. Ecol. Entomol. 3: 273–287.CrossRefGoogle Scholar
  24. Denholm, I., A. W. Farnham, K. O’Dell, and R. M. Sawicki. 1983. Factors affecting resistance to insecticides in house-flies, Musca domestica L. (Diptera: Muscidae). I. Long-term control with bioresmethrin of flies with strong pyrethroid-resistance potential. Bull. Entomol. Res. 73:481–489.CrossRefGoogle Scholar
  25. Denholm, I., R. M. Sawicki, and A. W. Famham. 1985. Factors affecting resistance to insecticides in house-flies, Musca domestica L. (Diptera: Muscidae). IV. The population biology of flies on animal farms in south-eastern England and its implications for the management of resistance. Bull. Entomol. Res. 75: 143–158.CrossRefGoogle Scholar
  26. Denholm, I., R. M. Sawicki, and A. W. Famham. 1987. Laboratory simulation of selection for resistance, pp. 138–149. In M. G. Ford, D. W. Holloman, B. P. S. Khambay and R. M. Sawicki (eds.), Combating resistance to xenobiotics: biological and chemical approaches. Horwood, Chichester, England.Google Scholar
  27. Dover, M. J., B. A. Croft, S. M. Welch, and R. L. Tummala. 1979. Biological control of Panonychus ulmi (Acarina: Teranychidae) by Amblyseiusfallacis (Acarina: Phytoseiidae) on apple: a prey-predator model. Environ. Entomol. 8: 282–292.Google Scholar
  28. Dowd, P. F., T. C. Sparks, and F. L. Mitchell. 1984. A microcomputer simulation program for demonstrating the development of insecticide resistance. Bull. Entomol. Soc. Am. 30: 37–41.Google Scholar
  29. Falconer, D. S. 1981. Introduction to quantitative genetics, 2nd ed. Longman, London.Google Scholar
  30. Fournier, D., M. Pralavario, A. Cuany and J. Berge. 1988. Genetic analysis of methidathion resistance in Phytoseiulus persimilis (Acari: Phytosiidae). J. Econ. Entomol. 81: 1008–1013.Google Scholar
  31. Georghiou, G. P. 1972. The evolution of resistance to pesticides. Annu. Rev. Ecol. Syst. 3:133–168.CrossRefGoogle Scholar
  32. Georghiou, G. P. 1980. Insecticide resistance and prospects for its management. Residue Rev. 76: 131–145.Google Scholar
  33. Georghiou, G. P. 1983. Management of resistance in arthropods, pp. 769–792. In G. P. Georghiou and T. Saito (eds), Pest resistance to pesticides. Plenum, New York.CrossRefGoogle Scholar
  34. Georghiou, G. P. 1986. The magnitude of the resistance problem, pp. 14–43. In Pesticide resistance: strategies and tactics for management. National Academy of Sciences, Washington, D.C.Google Scholar
  35. Georghiou, G. P., and C. E. Taylor. 1977a. Genetic and biological influences in the evolution of insecticide resistance. J. Econ. Entomol. 70: 319–323.PubMedGoogle Scholar
  36. Georghiou, G. P., and C. E. Taylor. 1977b. Operational influences in the evolution of insecticide resistance. J. Econ. Entomol. 70: 653–658.PubMedGoogle Scholar
  37. Georghiou, G. P., and C. E. Taylor. 1986. Factors influencing the evolution of resistance, pp. 157–169. In Pesticide resistance: strategies and tactics for management. National Academy of Sciences, Washington, D.C.Google Scholar
  38. Georghiou, G. P., R. B. March, and G. E. Printy. 1963. A study on the genetics of dieldrin-resistance in the housefly (Musca domestica L.). Bull. WHO 29: 155–165.PubMedGoogle Scholar
  39. Georghiou, G. P., A. Lagunes, and J. D. Baker. 1983. Effect of insecticide rotations on evolution of resistance, pp. 183–189. In J. Miyamoto (ed.), IUPAC pesticide chemistry, human welfare and the environment, Pergamon, Oxford.Google Scholar
  40. Greever, J., and G. P. Georghiou. 1979. Computer simulations of control strategies for Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 16: 180–188.PubMedGoogle Scholar
  41. Guttierez, A. P., U. Regev, and H. Shalet. 1979. An economic optimization model of pesticide resistance: alfalfa and Egyptian alfalfa weevil—an example. Environ. Entomol. 8: 101–107.Google Scholar
  42. Guttierez, A. P., U. Regev, and C. G. Summers. 1976. Computer model aids in weevil control. Calif. Agric. April: 8–9.Google Scholar
  43. Haliscak, J. P., and R. W. Beeman. 1983. Status of malathion resistance in five genera of beetles infesting farm-stored corn, wheat, and oats in the United States. J. Econ. Entomol. 76: 717–722.Google Scholar
  44. Halliday, W. R., and G. P. Georghiou. 1985. Inheritance of resistance to permethrin and DDT in the southern house mosquito (Diptera: Culicidae). J. Econ. Entomol. 78: 762–767.Google Scholar
  45. Horn, D. J., and R. W. Wadleigh. 1988. Resistance of aphid natural enemies to insecticides, pp. 337–347. In A. K. Minks and P. Harrewijn (eds.), Aphids, their biology, natural enemies, and control, Vol. B. Elsevier, Amsterdam.Google Scholar
  46. Hoy, M. A. 1985. Recent advances in genetics and genetic improvement of the Phytoseiidae. Annu. Rev. Entomol. 30: 345–370.CrossRefGoogle Scholar
  47. Hueth, D., and U. Regev. 1974. Optimal agricultural pest management with increasing pest resistance. Am. J. Agric. Econ. 56: 543–552.CrossRefGoogle Scholar
  48. Huffaker, C. B. 1971. The ecology of pesticide interference with insect populations, pp. 92–107. In J. E. Swift (ed.), Agricultural chemicals—harmony or discord for food, people, and the environment. Univ. Calif. Div. Agric. Sci. Public, Berkeley.Google Scholar
  49. Imai, C. 1987. Control of insecticide resistance in a field population of houseflies, Musca domestica, by releasing susceptible flies. Res. Popul. Ecol. 29: 129–146.CrossRefGoogle Scholar
  50. Johnson, M. W., and B. E. Tabashnik. 1990. Enhanced biological control through pesticide selectivity. In T. W. Fisher et al. (eds.), Principles and application of biological control. University of California Press, Berkeley (in press).Google Scholar
  51. Knight, A. L., and G. W. Norton. 1989. Economics of agricultural pesticide resistance in arthropods. Annu. Rev. Entomol. 34: 293–313.CrossRefGoogle Scholar
  52. Knipling, E. F., and W. Klassen. 1984. Influence of insecticide use patterns on the development of resistance to insecticides—a theoretical study. Southwest. Entomol. 9: 351–368.Google Scholar
  53. Lande, R. 1983. The response to selection on major and minor mutations affecting a metrical trait. Heredity 50: 47–65.CrossRefGoogle Scholar
  54. Lazarus, W. F., and B. F. Dixon. 1984. Agricultural pests as common property: control of the corn rootworm. Am. J. Agric. Econ. 66: 456–465.CrossRefGoogle Scholar
  55. Leeper, J. R., R. T. Roush, and H. T. Reynolds. 1986. Preventing or managing resistance in arthropods, pp. 335–346. In Pesticide resistance: strategies and tactics for management. National Academy of Sciences, Washington, D.C.Google Scholar
  56. Lenski, R. E. 1988a. Experimental studies of pleiotropy and epistasis in Escherichia coli I. Variation in competitive fitness among mutants resistant to virus T4. Evolution 42: 425–432.CrossRefGoogle Scholar
  57. Lenski, R. E. 1988b. Experimental studies of pleiotropy and epistasis in Escherichia coli. U Compensation for maladaptive effects associated with resistance to virus T4. Evolution 42:433–440.CrossRefGoogle Scholar
  58. Levin, B. R., J. A. Barrett, E. C. Craze, A. P. Dobson, F. Gould, J. H. Greaves, D. Heckel, R. M. May, H. T. Reynolds, R. T. Roush, B. E. Tabashnik, M. Uyenoyama, S. Via, M. J. Whitten, and M. S. Wolfe. 1986. Population biology of pesticide resistance: bridging the gap between theory and practical applications, pp. 143–156. In Pesticide resistance: strategies and tactics for management. National Academy of Sciences, Washington, D.C.Google Scholar
  59. Lichtenburg, E., and D. Zilberman. 1986. The econometrics of damage control: why specification matters. Am. J. Agric. Econ. 68: 261–273.CrossRefGoogle Scholar
  60. Liu, M. Y., Y. J. Tseng, and C. N. Sun. 1981. Diamondback moth resistance to several synthetic pyrethroids. J. Econ. Entomol. 74: 393–3%.Google Scholar
  61. Longstaff, B. C. 1988. Temperature manipulation and the management of insecticide resistance in stored grain pests: a simulation study for the rice weevil, Sitophilus oryzae Ecol. Modelling 43: 303–313.CrossRefGoogle Scholar
  62. MacDonald, G. 1959. The dynamics of resistance to insecticides by anophelines. Riv. Parassitol. 20: 305–315.Google Scholar
  63. MacDonald, R. S., G. A. Surgeoner, K. R. Solomon, and C. R. Harris. 1983a. Effect of four spray regimes on the development of permethrin and dichlorvos resistance in the laboratory by the house fly (Diptera: Muscidae). J. Econ. Entomol. 76: 417–422.PubMedGoogle Scholar
  64. MacDonald, R. S., G. A. Surgeoner, K. R. Solomon, and C. R. Harris. 1983b. Development of resistance to permethrin and dichlorvos by the house fly (Diptera: Muscidae) following continuous and alternating insecticide use on four farms. Can. Entomol. 115: 1555–1561.CrossRefGoogle Scholar
  65. Mangel, M., and R. E. Plant. 1983. Multiseasonal management of an agricultural pest. I. Development of the theory. Ecol. Modelling 20: 1–19.CrossRefGoogle Scholar
  66. Mani, G. S. 1985. Evolution of resistance in the presence of two insecticides. Genetics 109: 761–783.PubMedGoogle Scholar
  67. Mani, G. S., and R. J. Wood. 1984. Persistence and frequency of application of an insecticide in relation to the rate of evolution of resistance. Pestic. Sci. 15. 325–336.CrossRefGoogle Scholar
  68. Mason, G. A., B. E. Tabashnik, and M. W. Johnson. 1989. Effects of biological and operational factors on evolution of insecticide resistance in Liriomyza (Diptera: Agromyzidae). J. Econ. Entomol. 82: 369–373.Google Scholar
  69. Maudlin, I., C. H. Green, and F. Barlow. 1981. The potential for insecticide resistance in Glossina (Diptera: Glossinidae)—an investigation by computer simulation and chemical analysis. Bull. Entomol. Res. 71: 691–702.CrossRefGoogle Scholar
  70. May, R. M., and A. P. Dobson. 1986. Population dynamics and the rate of evolution of pesticide resistance, pp. 170–193. In Pesticide resistance: strategies and tactics for management. National Academy of Sciences, Washington, D.C.Google Scholar
  71. McKenzie, J. A., M. J. Whitten, and M. A. Adena. 1982. The effect of genetic background on the fitness of diazinon resistance genotypes of the Australian sheep blowfly, Lucilia cuprina Heredity 49: 1–9.CrossRefGoogle Scholar
  72. Muggleton, J. 1982. A model for the elimination of insecticide resistance using heterozygous disadvantage. Heredity 49: 247–251.CrossRefGoogle Scholar
  73. Muggleton, J. 1986. Selection for malathion resistance in Oryzaephilus surinamensis (L) (Coleoptera:Silvanidae): fitness values of resistant and susceptible phenotypes and their inclusion in a general model describing the spread of resistance. Bull. Entomol. Res. 76: 469–480.CrossRefGoogle Scholar
  74. Oppenoorth, F. J. 1985. Biochemistry and genetics of insecticide resistance, pp. 731–773. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive insect physiology, biochemistry, and pharmacology, Vol. 12. Pergamon, Oxford.Google Scholar
  75. Ozaki, K. 1983. Suppression of resistance through synergistic combinations with emphasis on planthoppers and leafhoppers infesting rice in Japan, pp. 595–613. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.CrossRefGoogle Scholar
  76. Ozburn, G. W., and F. O. Morrison. 1963. The effect of diluting a colony of DDT resistant houseflies with non-resistant houseflies. Phytoprotection 44: 32–36.Google Scholar
  77. Pedersen, O. C. 1984. Models of pesticide resistance dynamics. Acta Agric. Scand. 34: 145–152.CrossRefGoogle Scholar
  78. Pimentel, D., and A. C. Bellotti. 1976. Parasite-host population systems and genetic stability. Am. Nat. 95: 65–79.CrossRefGoogle Scholar
  79. Pimentel, D., and M. Burgess. 1985. Effects of single versus combinations of insecticides on the development of resistance. Environ. Entomol. 14: 582–589.Google Scholar
  80. Plant, R. E., M. Mangel, and L. E. Flynn. 1985. Multiseasonal management of an agricultural pest H: The economic optimization problem. J. Environ. Econ. Man. 12: 45–61.CrossRefGoogle Scholar
  81. Plapp, F. W., Jr., C. R. Browning, and P. J. H. Sharpe. 1979. Analysis of rate of development of insecticide resistance based on simulation of a genetic model. Environ. Entomol. 8: 494–500.Google Scholar
  82. Prasittisuk, C., and C. F. Curtis. 1982. Further study of DDT resistance m Anopheles gambiae Giles (Diptera: Culicidae) and a cage test of elimination of resistance from a population by male release. Bull. Entomol. Res. 72: 335–344.CrossRefGoogle Scholar
  83. Pree, D. J. 1987. Inheritance and management of cyhexatin and difocol resistance in the European red mite (Acari: Tetranychidae). J. Econ. Entomol. 80: 1106–1112.Google Scholar
  84. Rawlings, P., and G. Davidson. 1982. The dispersal and survival of Anopheles culicifacies Giles (Diptera: Culicidae) in a Sri Lankan village under malathion spraying. Bull. Entomol. Res. 72:139–144.CrossRefGoogle Scholar
  85. Rawlings, P., G. Davidson, R. K. Sakai, H. R. Rathor, M. Aslamkhan, and C. F. Curtis. 1981. Field measurement of the effective dominance of an insecticide resistance in anopheline mosquitos. Bull. WHO 59: 631–640.PubMedGoogle Scholar
  86. Raymond, M., N. Pasteur, and G. P. Georghiou. 1987. Inheritance of chlorpyrifos resistance in Culex pipiens L. (Diptera: Culicidae) and estimation of the number of genes involved. Heredity 58: 351–356.CrossRefGoogle Scholar
  87. Riddles, P. W., and J. Nolan. 1987. Prospects for the management of arthropod resistance to pesticides. Int. J. Parasitol. 17: 679–688.PubMedCrossRefGoogle Scholar
  88. Rosenheim, J. A., and M. A. Hoy. 1986. Intraspecific variation in levels of pesticide resistance in field populations of a parasitoid, Aphytis melinus (Hymenoptera: Aphelinidae): the role of past selection pressures. J. Econ. Entomol. 79: 1161–1173.Google Scholar
  89. Roush, R. T. 1989. Designing resistance management programs: how can you choose? Pestic. Sci. 26: 423–441.CrossRefGoogle Scholar
  90. Roush, R. T., and J. A. McKenzie. 1987. Ecological genetics of insecticide and acaricide resistance. Annu. Rev. Entomol. 32: 361–380.PubMedCrossRefGoogle Scholar
  91. Roush, R. T., R. L. Combs, T. C. Randolph, and J. A. Hawkins. 1986. Inheritance and effective dominance of pyrethroid resistance in the horn fly (Diptera: Muscidae). J. Econ. Entomol. 32: 361–380.Google Scholar
  92. Sarhan, M. E., R. E. Howitt, and C. V. Moore. 1979. Pesticide resistance externalities and optimal mosquito management. J. Environ. Econ. Man. 6: 69–84.CrossRefGoogle Scholar
  93. Sawicki, R. M., and I. Denholm. 1987. Management of resistance to pesticides in cotton pests. Trop. Pest Manag. 33: 262–272.CrossRefGoogle Scholar
  94. Shoemaker, C. A. 1982. Optimal integrated control of univoltine pest populations with age structure. Oper. Res. 30: 40–61.CrossRefGoogle Scholar
  95. Sinclair, E. R., and J. Alder. 1985. Development of a computer simulation model of stored product insect populations on grain farms. Agric. Syst. 18: 95–113.CrossRefGoogle Scholar
  96. Sutherst, R. W., and H. N. Comins. 1979. The management of acaricide resistance in the cattle tick Boophilus microplus (Canestrini) (Acari: Ixodidae), in Australia. Bull. Entomol. Res. 69: 519–537.Google Scholar
  97. Tabashnik, B. E. 1986a. Computer simulation as a tool for pesticide resistance management, pp. 194–206. In Pesticide resistance: strategies and tactics for management. National Academy of Sciences, Washington, D.C.Google Scholar
  98. Tabashnik, B. E. 1986b. Model for managing resistance to fenvalerate in the diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 79: 1147–1451.Google Scholar
  99. Tabashnik, B. E. 1986c. Evolution of pesticide resistance in predator-prey systems. Bull. Entomol. Soc. Am. 32: 156–161.Google Scholar
  100. Tabashnik, B. E. 1986d. Insect resistance. Science 234: 802.PubMedCrossRefGoogle Scholar
  101. Tabashnik, B. E. 1987. Computer-aided management of insecticide resistance, pp. 215–218. In Proc. 1987 Beltwide Cotton Production Research Conferences, National Cotton Council of America, Memphis.Google Scholar
  102. Tabashnik, B. E. 1989. Managing resistance with multiple pesticide tactics: theory, evidence, and recommendations. J. Econ. Entomol. 82: 1263–1269.PubMedGoogle Scholar
  103. Tabashnik, B. E., and B. A. Croft. 1982. Managing pesticide resistance in crop-arthropod complexes: interactions between biological and operational factors. Environ. Entomol. 11:1137–1144.Google Scholar
  104. Tabashnik, BE., and B. A. Croft. 1985. Evolution of pesticide resistance in apple pests and their natural enemies. Entomophaga 30: 37–49.CrossRefGoogle Scholar
  105. Tabashnik, B. E., and N. L. Cushing. 1989. Quantitative genetic analysis of insecticide resistance: variation in fenvalerate tolerance in a diamondback moth (Lepidoptera: Plutellidae) population. J. Econ. Entomol. 79: 189–191.Google Scholar
  106. Tabashnik, B. E., and M. W. Johnson. 1990. Evolution of pesticide resistance in natural enemies. In T. Fisher et al. (eds.), Principles and application of biological control, University of California Press, Berkeley (in press).Google Scholar
  107. Tabashnik, B. E., N. L. Cushing, and M. W. Johnson. 1987. Diamondback moth (Lepidoptera: Plutellidae) resistance to insecticides in Hawaii: intra-island variation and cross-resistance. J. Econ. Entomol. 80: 1091–1099.Google Scholar
  108. Taylor, C. E. 1983. Evolution of resistance to insecticides: the role of mathematical models and computer simulations, pp. 163–173. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.CrossRefGoogle Scholar
  109. Taylor, C. E. 1986. Genetics and evolution of resistance to insecticides. Biol. J. Linn. Soc. 27:103–112.CrossRefGoogle Scholar
  110. Taylor, C. E. 1989. On the use of more than one insecticide to control resistance: theory and computer simulation (in manuscript).Google Scholar
  111. Taylor, C. E., and J. C. Headley. 1975. Insecticide resistance and the evolution of control strategies for an insect population. Can. Entomol. 107: 237–242.CrossRefGoogle Scholar
  112. Taylor, C. E., and G. P. Georghiou. 1979. Suppression of insecticide resistance by alteration of gene dominance and migration. J. Econ. Entomol. 72: 105–109.Google Scholar
  113. Taylor, C. E., and G. P. Georghiou. 1982. Influence of pesticide persistence in evolution of resistance. Environ. Entomol. 11: 746–750.Google Scholar
  114. Taylor, C. E., F. Quaglia, and G. P. Georghiou. 1983. Evolution of resistance to insecticides: a cage study on the influence of immigration and insecticide decay rates. J. Econ. Entomol. 76:704–707.Google Scholar
  115. Uyenoyama, M. K. 1986. Pleiotropy and the evolution of genetic systems conferring resistance to pesticides, pp. 207–221. In Pesticide resistance: strategies and tactics for management. National Academy of Sciences, Washington, D.C.Google Scholar
  116. Via, S. 1986. Quantitative genetic models and the evolution of pesticide resistance, pp. 222–235. In Pesticide resistance: strategies and tactics for management. National Academy of Sciences, Washington, D.C Google Scholar
  117. Waage, J. K., M. P. Hassel, and H. C. J. Godfrey. 1985. The dynamics of pest-parasitoid-insecticide interactions. J. Appl. Ecol. 22: 825–838.Google Scholar
  118. Whitten, M. J., and J. A. McKenzie. 1982. The genetic basis for pesticide resistance, pp. 1–16. In K. E. Lee (ed.),. Proc. 3rd Australasian Conf. Grassland Invert. Ecol., South Aust. Gov. Print., Adelaide.Google Scholar
  119. Wilson, E. O., and W. H. Bossert. 1971. A primer of population biology. Sinauer Associates, Sunderland, Mass.Google Scholar
  120. Wood, R. J. 1981. Insecticide resistance: genes and mechanisms, pp. 53–96. In J. A. Bishop and L. M. Cook (eds.), Genetic consequences of man made change. Academic, New York.Google Scholar
  121. Wood, R. J., and G. S. Mani. 1981. The effective dominance of resistance genes in relation to the evolution of resistance. Pestic. Sci. 12: 573–581.CrossRefGoogle Scholar
  122. Wool, D., and S. Noiman. 1983. Integrated control of insecticide resistance by combined genetic and chemical treatments: a warehouse model with flour beetles (Tribolium; Tenebrionidae, Coleoptera). Z. Agnew. Entomol. 95: 22–30.CrossRefGoogle Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • Bruce E. Tabashnik

There are no affiliations available

Personalised recommendations