The Role of Population Genetics in Resistance Research and Management

  • Richard T. Roush
  • Joanne C. Daly


Pesticide resistance is an evolutionary phenomenon (Dobzhansky 1951), which cannot be fully understood without genetic data. Genetic studies are a major tool in developing improved methods of detecting resistance (Chapter 2), for investigating the mechanisms of resistance (Chapters 3 and 4), and in choosing approaches to manage resistance (Chapters 6, 9, and 10).


Insecticide Resistance Resistance Allele Susceptible Strain Resistance Management Pyrethroid Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous. 1983. Pyrethroid resistance. Aust. Cotton Grower 4(3):4–7.Google Scholar
  2. Amin, A. M., and G. B. White. 1984. Relative fitness of organophosphate-resistant and susceptible strains of Culex quinquefasciatus Say (Diptera: Culicidae). Bull. Entomol. Res. 74: 591–598.CrossRefGoogle Scholar
  3. Argentine, J. A., and J. M. Clark, 1990. Selection for abamectin resistance in Colorado potato beetle. (Coleoptera: Chrysomelidae). Pest. Sci. 28: 17–24.CrossRefGoogle Scholar
  4. Arnold, J. T. A., and M. J. Whitten. 1976. The genetic basis for organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera, Calliphoridae). Bull. Entomol. Res. 66: 561–568.CrossRefGoogle Scholar
  5. Ballantyne, G. H., and R. A. Harrison. 1967. Genetic and biochemical comparisons of organophosphorous resistance between strains of spider mites (Tetranychus species: Acari). Entomol. Exp. Appl. 10: 231–239.CrossRefGoogle Scholar
  6. Bauernfeind, R. J., and R. K. Chapman. 1985. Non-stable parathion and endosulfan resistance in green peach aphids. (Homoptera: Aphididae). J. Econ. Entomol. 78: 516–522.Google Scholar
  7. Beeman, R. W. 1983. Inheritance and linkage of malathion resistance in the red flour beetle. J. Econ. Entomol. 76: 737–740.Google Scholar
  8. Beeman, R. W., and S. M. Nanis. 1986. Malathion resistance alleles and their fitness in the red flour beetle (Coleoptera: Tenebrionidae) J. Econ. Entomol. 79: 580–587.Google Scholar
  9. Beranek, A. P. 1974. Stable and non-stable resistance to dimethoate in the peach-potao aphid (Myzus persicae). Entomol. Exp. Appl. 17: 381–390.CrossRefGoogle Scholar
  10. Bigley, W. S., F. W. Plapp, R. L. Hanna, and J. A. Harding. 1981. Effect of toxaphene, camphene and cedar oil on methyl parathion residues on cotton. Bull. Environ. Contain. Toxicol. 27:92–94.CrossRefGoogle Scholar
  11. Boggild, O., and J. Keiding. 1958. Competition in house fly larvae: experiments involving a DDT-resistant and susceptible strain. Oikos 9: 1–25.CrossRefGoogle Scholar
  12. Brattsten, L. B. 1987. Sublethal virus infection destroys cytochrome P-450 in an insect. Experientia 43: 451–454.CrossRefGoogle Scholar
  13. Brown, A. W. A. 1967. Genetics of insecticide resistance in insect vectors, pp. 505–552. In J. W. Wright and R. Pal (eds.), Genetics of insect vectors of disease. Elsevier, New York.Google Scholar
  14. Brown, T. M., and G. T. Payne. 1988. Experimental selection for insecticide resistance. J. Econ. Entomol. 81: 49–56.Google Scholar
  15. Buchi, R. 1981. Evidence that resistance against pyrethroids in aphids Myzus persicae and Phorodon hamuli is not correlated with high carboxylesterase activity. J. Plant Dis. Protection 88: 631–634.Google Scholar
  16. Bull, D. L., R. L. Harris, and N. W. Pryor. 1988. The contribution of metabolism to pyrethroid and DDT resistance in the horn fly (Diptera: Muscidae). J. Econ. Entomol. 81: 449–458.PubMedGoogle Scholar
  17. Carbonaro, M. A., D. E. Moreland, V. E. Edge, N. Motoyama,G. C. Rock, and W. C. Dauterman. 1986. Studies on the mechanism of cyhexatin resistance in the twospotted spider mite, Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 79: 576–579.PubMedGoogle Scholar
  18. Charlesworth, B. 1979. Evidence against Fisher’s theory of dominance. Nature 278: 848–849.CrossRefGoogle Scholar
  19. Clark, A. G., and N. A. Shamaan. 1984. Evidence that DDT-dehydrochlorinase from the house fly is a glutathione-S-transferase. Pestic. Biochem. Physiol. 22: 249–261.CrossRefGoogle Scholar
  20. Cluck, T., F. W. Platt, Jr., and J. S. Johnston. 1985. Metabolic resistance to insecticides: heterozygosity at the chromosome II locus in house flies, Musca domestica (Diptera: Muscidae). J. Econ. Entomol. 78: 1015–1019.PubMedGoogle Scholar
  21. Coluzzi, M., A. Sabatini, V. Petrarca, and M. A. DiDeco. 1977. Behavioral divergence between mosquitoes with different inversion karyotypes in polymorphic populations of the Anopheles gambiae complex. Nature 226: 832–833.CrossRefGoogle Scholar
  22. Comins, H. N. 1977. The management of pesticide resistance. J. Theor. Biol. 65: 399–420.PubMedCrossRefGoogle Scholar
  23. Crow, J. F. 1957. Genetics of insect resistance to chemicals. Annu. Rev. Entomol. 2: 227–246.CrossRefGoogle Scholar
  24. Crow, J. F., and M. Kimura. 1970. An introduction to population genetics theory. New York: Harper &Row.Google Scholar
  25. Curtis, C. F. 1985. Theoretical models of the use of insecticide mixtures for the management of resistance. Bull. Entomol. Res. 75: 259–265.CrossRefGoogle Scholar
  26. Curtis, C. F., L. M. Cook, and R. J. Wood. 1978. Selection for and against insecticide resistance and possible methods of inhibiting the evolution of resistance in mosquitoes. Ecol. Entomol. 3: 273–287.CrossRefGoogle Scholar
  27. Daly, J. C., and P. Gregg. 1985. Genetic variation in Heliothis in Australia: species identification and gene flow in the two pest species, H. armigera (Hübner) and H. punctigera Wellengren (Lepidoptera: Noctuidae). Bull. Entomol. Res. 75: 169–184.CrossRefGoogle Scholar
  28. Daly, J. C., and J. A. McKenzie. 1986. Resistance management strategies in Australia: the Heliothis and WormkilT programmes, pp. 951–959. In Proceedings, British Crop Protection Conference on Pests and Diseases, Brighton, November 1986, The British Crop Protection Council, Surrey.Google Scholar
  29. Daly, J. C., and D. A. H. Murray. 1988. Evolution of resistance to pyrethroids in Heliothis armigera (Hübner) (Lepidoptera: Noctuidae) in Australia. J. Econ. Entomol. 81: 984–988.Google Scholar
  30. Daly, J., J. H. Fisk, and N. W. Forrester. 1988a. Selective mortality in field trials between strains of Heliothis armigera (Lepidoptera: Noctuidae) resistant and susceptible to pyrethroids: functional dominance of resistance and age class. J. Econ. Entomol. 81:1000–1007.Google Scholar
  31. Daly, J. C., G. P. Fitt, and J. H. Fisk. 1988b. Pyrethroid resistance in pupal and adult Heliothis armigera, pp. 73–78. In Proceedings Australian Cotton Conference, Surfers Paradise, Queensland.Google Scholar
  32. Dawson, G. W., D. C. Griffiths, J. A. Pickett, and C. M. Woodcock. 1983. Decreased response to alarm pheromone by insecticide-resistant aphids. Naturwissenschaften 70: 254–255.CrossRefGoogle Scholar
  33. Denholm, I., R. M. Sawicki, and A. W. Farnham. 1985. Factors affecting resistance to insecticides in house-flies, Musca domestica L. (Diptera: Muscidae). IV. The population biology of flies on animal farms in south-eastern England and its implications for the management of resistance. Bull. Entomol. Res. 75: 143–158.CrossRefGoogle Scholar
  34. Devonshire, A. L., and G. D. Moores. 1982. A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pest. Biochem. Physiol. 18: 235–246.CrossRefGoogle Scholar
  35. Dickson, R. C. 1941. Inheritance of resistance to hydrocyanic acid fumigation in the California red scale. Hilgardia 13: 515–522.Google Scholar
  36. Dittrich, V. 1975. Acaricide resistance in mites. Z. Angew. Entomol. 78: 28–45.CrossRefGoogle Scholar
  37. Dittrich, V., N. Luetkemeier, and G. Voss. 1980. OP-resistance in Spodoptera littoralis: inheritance, larval and imaginai expression and consequences for control. J. Econ. Entomol. 73: 356–362.Google Scholar
  38. Dobzhansky, T. 1951. Genetics and the origin of species. 3rd ed. Columbia University Press, New York.Google Scholar
  39. Edge, V. E., and D. G. James. 1986. Organo-tin resistance in Tetranychus urticae (Acari: Tetranych-idae) in Australia. J. Econ. Entomol. 79: 1477–1483.Google Scholar
  40. Eggers-Schumacher, H. A. 1983. A comparison of the reproductive performance of insecticide-resistant and susceptible clones of Myzus persicae. Entomol. Exp. Appl. 34: 301–307.CrossRefGoogle Scholar
  41. El-Khatib, Z. I., and G. P. Georghiou. 1985. Comparative fitness of temephos-resistant, susceptible, and hybrid phenotypes of the southern house mosquito (Diptera: Culicidae). J. Econ. Entomol. 78: 1023–1029.Google Scholar
  42. Emeka-Ejiofor, S. A. I., C. F. Curtis, and G. Davidson. 1983. Tests for effects of insecticide resistance genes in Anopheles gambiae on fitness in the absence of insecticides. Entomol. Exp. Appl. 34: 163–168.CrossRefGoogle Scholar
  43. Falconer, D. S. 1981. Introduction to quantitative genetics. 2nd ed. Longman, New York.Google Scholar
  44. Farnham, A. W., K. E. O’Dell, I. Denholm, and R. M. Sawicki. 1984. Factors affecting resistance to insecticides in house-flies, Musca domestica L. (Diptera: Muscidae). HI. Relationship between the level of resistance to pyrethroids, control failure in the field and the frequency of gene kdr. Bull. Entomol. Res. 74: 581–589.CrossRefGoogle Scholar
  45. Farrow, R. A. and J. C. Daly. 1987. Long-range movement as an adaptive strategy in the genus Heliothis (Lepidoptera: Noctuidae): a review of its occurrence and detection in four pest species. Aust. J. Zool. 35: 1–24.CrossRefGoogle Scholar
  46. Ferrari, J. A., and G. P. Georghiou. 1981. Effects of insecticidal selection and treatment on reproductive potential of resistant, susceptible, and heterozygous strains of the southern house mosquito. J. Econ. Entomol. 74: 323–327.Google Scholar
  47. Ferrari, J. A., C. E. Taylor, G. P. Georghiou and A. Lagunes. 1982. Selection with several insecticides in the mosquito Culex quinquefasciatus: heritabilities of resistance and genetic correlations. Genetics s1OO: 23–24.Google Scholar
  48. Ferris, I. G., and R. V. Gunning. 1984. Pyrethroid resistance in Heliothis armiger, pp. 137–140. In Proceedings 1984 Australian Cotton Growers Research Conference, Toowoomba, Queensland.Google Scholar
  49. ffrench-Constant, R. H., A. L. Devonshire, and S. J. Clark. 1987. Differential rate of selection for resistance by carbamate, organophosphorous and combined pyrethroid and organophosphorous insecticide in Myzus persicae (Sulzer) (Hemiptera: Aphididae). Bull. Entomol. Res. 77: 227–238.CrossRefGoogle Scholar
  50. Fitt, G. P., and N. W. Forrester. 1988. Overwintering of Heliothis-ihe importance of stubble cultivation. Aust. Cotton Grower 8(4): 7–8.Google Scholar
  51. Follett, P. A., B. A. Croft, and P. H. Westigard. 1985. Regional resistance to insecticides inPsylla pyricola from pear orchards in Oregon. Can. Entomol. 117: 565–573.CrossRefGoogle Scholar
  52. Forrester, N. W. 1988a. Good news on the resistance front. Aust. Cotton Grower 9(2): 13–14.Google Scholar
  53. Forrester, N. W. 1988b. Field selection for pyrethroid resistance genes. Aust. Cotton Grower 9(3): 48–51.Google Scholar
  54. Forrester, N. W. 1989. Updated insecticide resistance levels. Aust. Cotton Grower 10(1): 32–34.Google Scholar
  55. Forrester, N. W., and M. Cahill. 1987. Management of insecticide resistance in Heliothis armigera (Hubner) in Australia, pp. 127–137. In M. G. Ford, D. W. Holloman, B. P. S. Khambay, and R. M. Sawicki (eds.), Combating resistance to xenobiotics: biological and chemical approaches. Ellis Horwood, Chichester, England.Google Scholar
  56. Foster, G. G., M. J. Whitten, C. Konovalov, J. T. A. Arnold, and G. Maffi. 1981. Autosomal genetic maps of the Australian sheep blowfly, Lucilia cuprina dorsalis R-D. (Diptera: Calliphoridae) and possible correlations with the linkage maps of Musca domestica L. and Drosophila melanogas-ter (Mg.). Genet. Res. 37: 55–69.CrossRefGoogle Scholar
  57. Futuyma, D. J. 1979. Evolutionary biology. Sinauer Associates, Sunderland, Mass.Google Scholar
  58. Georghiou, G. P. 1969. Genetics of resistance to insecticides in houseflies and mosquitoes. Exp. Parasitol. 26: 224–255.PubMedCrossRefGoogle Scholar
  59. Georghiou, G. P. 1972. The evolution of resistance to pesticides. Annu. Rev. Ecol. Syst. 3:133–168.CrossRefGoogle Scholar
  60. Georghiou, G. P. 1983. Management of resistance in arthropods, pp. 769–792. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.CrossRefGoogle Scholar
  61. Georghiou, G. P. 1986. The magnitude of the resistance problem, pp. 14–43. In National Academy of Sciences (ed.), Pesticide resistance: strategies and tactics for management. National Academy Press, Washington, D.C.Google Scholar
  62. Georghiou, G. P., and C. E. Taylor. 1977a. Operational influences in the evolution of insecticide resistance. J. Econ. Entomol. 70: 653–658.PubMedGoogle Scholar
  63. Georghiou, G. P., and C. E. Taylor. 1977b. Genetic and biological influences in the evolution of insecticide resistance. J. Econ. Entomol. 70: 319–323.PubMedGoogle Scholar
  64. Gibson, J. P. 1981. Problems in obtaining a description of the evolution of dimethoate resistance in Danish houseflies (Musca domestica). Pestic. Sci. 12: 565–572.CrossRefGoogle Scholar
  65. Gilotra, S. K. 1965. Reproductive potentials of dieldrin-resistant and susceptible populations of Anopheles albimanus Wiedemann. Amer. J. Trop. Med. Hyg. 14: 165–169.Google Scholar
  66. Goodyer, G. J., and L. R. Greenup. 1980. A survey of insecticide resistance in the cotton bollworm, Heliothis armigera (Hübner) (Lepidoptera: Noctuidae) in New South Wales. Gen. Appl. Entomol. 12: 37–39.Google Scholar
  67. Gregg, P., P. Twine, and G. Fitt. 1987. Heliothis in non-cropping areas. Aust. Cotton Grower 8(3): 40–42.Google Scholar
  68. Gregg, P. C., G. McDonald and K. P. Bryceson. 1989. The occurrence of Heliothis punctigera Wallengren and H. armigera Hübner in inland Australia. J. Aust. Entomol. Soc. 28: 135–141.CrossRefGoogle Scholar
  69. Gunning, R. V., and C. S. Easton. 1989. Pyrethroid resistance in Heliothis armigera (Hübner) collected from unsprayed maize crops in New South Wales in 1983–1987. J. Aust. Entomol. Soc. 28: 57–61.CrossRefGoogle Scholar
  70. Gunning, R. V., C. S. Easton, L. R. Greenup, and V. E. Edge. 1984. Pyrethroid resistance in Heliothis armigera (Hübner) (Lepidoptera: Noctuidae) in Australia. J. Econ. Entomol. 77: 1283–1287.Google Scholar
  71. Gwynne, D. T. 1984. Male mating effort, confidence of paternity and insect sperm competition, pp. 117–149. In R. L. Smith (ed.), Sperm competition and the evolution of animal mating systems. Academic Press, New York.Google Scholar
  72. Halliday, W. R., and G. P. Georghiou. 1085. Inheritance of resistance to permethrin and DDT in the southern house mosquito (Diptera: Culicidae). J. Econ. Entomol. 78: 762–767.Google Scholar
  73. Hare, J. D., and G. G. Kennedy. 1986. Genetic variation in plant-insect associations: survival of Leptinotarsa decemlineata populations on Solanum carolinense. Evolution 40: 1031–1043.CrossRefGoogle Scholar
  74. Hart, R. J. 1963. The inheritance of diazinon resistance in an Australian strain of Musca domestica L. Bull. Entomol. Res. 54: 461–465.CrossRefGoogle Scholar
  75. Heather, N. W. 1982. Comparison of population growth rates of malathion resistant and susceptible populations of the rice weevil, Sitophilus oryzae (Linnaeus) (Coleoptera: Curculionidae). Queensland J. Agric. Anim. Sci. 39: 61–68.Google Scholar
  76. Heckel, D. G., A. G. Abbott, and T. M. Brown. 1988. Genetic linkage mapping and insecticide resistance in Heliothis virescens. Sericologia 28s: 49.Google Scholar
  77. Helle, W. 1965. Resistance in the acarina: mites. Adv. Acarol. 2: 71–93.Google Scholar
  78. Hemingway, J., and G. P. Georghiou. 1984. Differential suppression of organophosphorus resistance in Culex quinquefasciatus by the synergists IBP, DEF, and TPP. Pest. Biochem. Physiol. 21: 1–9.CrossRefGoogle Scholar
  79. Hemingway, J., M. Rowland, and K. E. Kisson. 1984. Efficacy of pirimiphos methyl as a larvicide or adulticide against insecticide resistant and susceptible mosquitoes (Diptera: Culicidae). J. Econ. Entomol. 77: 868–871.PubMedGoogle Scholar
  80. Hemingway, J., B. C. Bonning, K. G. I. Jayawardena, I. S. Weerasinghe, P. R. J. Herath, and H. Oouchi. 1988. Possible selective advantage of Anopheles spp. (Diptera: Culicidae) with the oxidase- and acetylcholineasterase-based insecticide resistance genes after exposure to organophosphates or an insect growth regulator in Sri Lankan rice fields. Bull. Entomol. Res. 78: 471–478.CrossRefGoogle Scholar
  81. Holloway, G. J. 1986. A theoretical examination of the classical theory of inheritance of insecticide resistance and the genetics of time to knockdown and dry body weight in Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Bull. Entomol. Res. 76: 661–670.CrossRefGoogle Scholar
  82. Hughes, P. B., and D. A. Raftos. 1985. Genetics of an esterase associated with resistance to organophosphorus insecticides in the sheep blowfly, Lucilia cuprina (Weidemann) (Diptera: Calliphoridae). Bull. Entomol. Res. 75: 535–544.CrossRefGoogle Scholar
  83. Hurej, M., P. P. Sikorowski, and H. W. Chambers. 1982. Effects of bacterial contamination on insecticide-treated boll weevils (Coleoptera: Curculionidae). J. Econ. Entomol. 75: 651–654.Google Scholar
  84. Jones, R. L., N. W. Widstrom, and D. Perkins. 1977. Yellow-eye variant of the corn earworm. J. Hered. 68: 264–265.Google Scholar
  85. Kadous, A. A., S. M. Ghiasuddin, F. Matsumura, J. G. Scott, and K. Tanaka. 1983. Difference in the picrotoxinin receptor between the cyclodiene-resistant and susceptible strains of the German cockroach. Pest. Biochem. Physiol. 19: 157–166.CrossRefGoogle Scholar
  86. Kay, I. R. 1977. Insecticide resistance in Heliothis armigera (Hübner) (Lepidoptera: Noctuidae) in areas of Queensland, Australia. J. Aust. Entomol. Soc. 16: 43–45.CrossRefGoogle Scholar
  87. Kay, I. R., L. R. Greenup and C. Easton. 1983. Monitoring Heliothis armiger (Hübner) strains from Queensland for insecticide resistance. Queensland J. Agric. Anim. Sci. 40: 23–26.Google Scholar
  88. Kikkawa, H. 1964. Genetical studies on the resistance to parathion in Drosophila melanogaster. II. Induction of a resistance gene from its susceptible allele. Botyu-Kagaku 29: 37–42.Google Scholar
  89. Lagunes T., A. 1980. Impact of the use of mixtures and sequences of insecticides in the evolution of resistance in Culex quinquefasciatus Say (Diptera: Culicidae). Ph.D. dissertation, Univ. of California, Riverside.Google Scholar
  90. Leeper, J. R., R. T. Roush, and H. T. Reynolds. 1986. Preventing or managing resistance in arthropods, pp. 335–346. In National Academy of Science (ed.), Pesticide resistance: strategies and tactics for management. National Academy Press, Washington, D.C.Google Scholar
  91. Levin, B. R., et al. 1986. Population biology of pesticide resistance: bridging the gap between theory and practical applications, pp. 143–156. In National Academy of Science (ed.), Pesticide resistance: strategies and tactics for management. National Academy Press, Washington, D.C.Google Scholar
  92. Lines, J. D., M. A. E. Ahmed, and C. F. Curtis. 1984. Genetic studies of malathion resistance in Anopheles arabiensis Patton (Diptera: Culicidae). Bull. Entomol. Res. 74: 317–325.CrossRefGoogle Scholar
  93. Liu, M-Y., Y-J. Tzeng, and C-N Sun. 1981. Diamondback moth resistance to several synthetic pyrethroids. J. Econ. Entomol. 74: 393–396.Google Scholar
  94. Macnair, M. R. 1983. The genetic control of copper tolerance in the yellow monkey flower, Mimulus guttatus. Heredity 50: 283–293.CrossRefGoogle Scholar
  95. Mani, G. S. 1985. Evolution of resistance in the presence of two insecticides. Genetics 109: 761–783.PubMedGoogle Scholar
  96. McDonald, P. T., and C. D. Schmidt. 1987. Genetics of permethrin resistance in the horn fly (Diptera: Muscidae). J. Econ. Entomol. 80: 433–437.PubMedGoogle Scholar
  97. McDonald, P. T., C. D. Schmidt, W. F. Fisher, and S. E. Kunz. 1987. Survival of permethrin-susceptible, resistant, and Fl hybrid strains of Haematobia irritons (Diptera: Muscidae) on eartagged steers. J. Econ. Entomol. 80: 1218–1222.PubMedGoogle Scholar
  98. McEnroe, W. D. 1969. Free genetic variability in the two-spotted spider mite, Tetranychus urticae K. (Acarina: Tetranychidae). Massachusetts Exp. Stn. Bull. No. 580. 12 pp.Google Scholar
  99. McKenzie, J. A., and M. J. Whitten. 1982. Selection for insecticide resistance in the Australian sheep blowfly, Lucilia cuprina. Experientia 38: 84–85.PubMedCrossRefGoogle Scholar
  100. McKenzie, J. A., J. M. Dearn, and M. J. Whitten. 1980. Genetic basis of resistance to diazinon in Victorian populations of the Australian sheep blowfly, Lucilia cuprina. Aust. J. Biol. Sci. 33: 85–95.Google Scholar
  101. McKenzie, J. A., M. J. Whitten, and M. A. Adena. 1982. The effect of genetic background on the fitness of diazinon resistance genotypes of the Australian sheep blowfly, Lucilia cuprina. Heredity 49: 1–9.CrossRefGoogle Scholar
  102. McLeod, D., G. R. C. R. Harris, and G. R. Driscoll. 1969. Genetics of cyclodiene-insecticide resistance in the seed-corn maggot. J. Econ. Entomol. 62: 427–432.PubMedGoogle Scholar
  103. Miller, R. W., B. A. Croft, and R. D. Nelson. 1985. Effects of early season immigration on cyhexatin and formetanate resistance of Tetranychus urticae (Acari: Tetranychidae) on strawberry in central California. J. Econ. Entomol. 78: 1379–1388.Google Scholar
  104. Misra, R. K. 1968. Statistical tests of hypotheses concerning the degree of dominance in monofactorial inheritance. Biometrics 24: 429–434.PubMedCrossRefGoogle Scholar
  105. Mouches, C., D. Fournier, M. Raymond, M. Magnin, J.-B. Berge, N. Pasteur, and G. P. Georghiou. 1985. GENETIQUE.-Association entre 1 amplification de sequences d ADN, 1 augmentation quantitative d esterases et la resistance a des insecticides organophosphores chez des moustiques du complexe Culex pipiens, avec une note sur une amplification similaire chez Musca domestica L. Comptes Rendu Acad. Sci. Paris, Ser. ffl, 301(16): 695–700.Google Scholar
  106. Munsterman, L. E. and G. E. Craig, Jr. 1979. Genetics of Aedes aegypti: updating the linkage map. J. Hered. 70: 291–296.Google Scholar
  107. National Research Council. 1986. Pesticide resistance: strategies and tactics for management. National Academy Press, Washington, D.C.Google Scholar
  108. Neal, J. J. 1987. Metabolic costs of mixed function oxidase induction in Heliothis zea. Entomol. Exp. Appl. 43: 175–179.CrossRefGoogle Scholar
  109. Nolan, J. 1981. Current developments in resistance to amidine and pyrethroid tickicides in Australia. pp. 109–114. In G. B. Whitehead and J. D. Gibson (eds.), Tick Biology and control. Grahamstown, Rhodes Univ., Tick Res. Unit.Google Scholar
  110. Nolan, J., and P. E. Bird. 1977. Co-toxicity of synthetic pyrethroids and organophosphorous compounds against cattle tick (Boophilus microplus). J. Aust. Entomol. Soc. 16: 252.Google Scholar
  111. Nolan, J., and W. J. Roulston. 1979. Acaricide resistance as a factor in the management of acari of medical and veterinary importance, pp. 3–13. In J. G. Rodriguez (ed.), Recent advances in acarology, Vol. 2. Academic Press, New York.Google Scholar
  112. Nolan, J., H. J. Schnitzerling, and C. A. Schunter. 1972. Multiple forms of acetylcholinesterase from resistant and susceptible strains of the cattle tick, Boophilus microplus (Can.). Pestic. Biochem. Physiol. 2: 85–94.CrossRefGoogle Scholar
  113. Oppenoorth, F. J. 1985. Biochemistry and genetics of insecticide resistance, pp. 731–773. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive insect physiology, biochemistry, and pharmacology, Vol. 12. Pergamon, New York.Google Scholar
  114. Plapp, F. W. 1976. Biochemical genetics of insecticide resistance. Annu. Rev. Entomol. 21: 179–197.PubMedCrossRefGoogle Scholar
  115. Plapp, F. W., Jr., and C. Campanhola. 1986. Synergism of pyrethroids by chlordimeform against susceptible and resistant Heliothis, pp. 167–169. In Proceedings, 1986 beltwide cotton production research conference, Dallas, Texas, January 4–8, 1987. National Cotton Council of America, Memphis, Tenn.Google Scholar
  116. Plapp, F. W., Jr., C. R. Browning, and P. J. H. Sharpe. 1979. Analysis of rate of development of insecticide resistance based on simulation of a genetic model. Environ. Entomol. 8: 494–500.Google Scholar
  117. Pluthero, F. G., and S. F. H. Threlkeld. 1984. Mutations in Drosophila melanogaster affecting physiological and behavioral response to malathion. Can. Entomol. 116: 411–418.CrossRefGoogle Scholar
  118. Pree, D. J. 1987. Inheritance and management of cyhexatin and dicofol resistance in the European red mite (Acari: Tetranychidae). J. Econ. Entomol. 80: 1106–1112.Google Scholar
  119. Raftos, D. A. and P. B. Hughes. 1986. Genetic basis of specific resistance to malathion in the Australian sheep blow fly, Lucilia cuprina (Diptera: Calliphoridae) J. Econ. Entomol. 79: 553–557.Google Scholar
  120. Raymond, M., N. Pasteur, and G. P. Georghiou. 1987. Inheritance of chlorpyrifos resistance in Culex pipiens L. (Diptera: Culicidae) and estimation of the number of genes involved. Heredity 58: 351–356.CrossRefGoogle Scholar
  121. Rawlings, P., G. Davidson, R. K. Sakai, H. R. Rathor, K. M. Aslamkhan, and C. F. Curtis. 1981. Field measurement of the effective dominance of an insecticide resistance in anopheline mosquitos. Bull. WHO 59: 631–640.PubMedGoogle Scholar
  122. Reid, T. J. 1989. Acaricide resistance in Queensland. Information series QI89011, Department of Primary Industries, Queensland Government, Brisbane.Google Scholar
  123. Roulston, W. J., R. H. Wharton, J. Nolan, J. D. Kerr, J. T. Wilson, P. G. Thompson and M. Schotz. 1981. A survey for resistance in cattle ticks to acaricides. Aust. Vet. J. 57: 362–371.PubMedCrossRefGoogle Scholar
  124. Roulston, W. J., R. H. Wharton, H. J. Schnitzerling, R. W. Sutherst and N. D. Sullivan. 1971. Mixtures of chlorphenamidine with other acaricides for the control of oranophosphorous-resistant strains of cattle tick Boophilus microplus. Aust. Vet. J. 47: 521–528.PubMedCrossRefGoogle Scholar
  125. Roush, R. T. 1979. Selection for insecticide resistance in Metaseiulus occidentalis (Nesbitt) (Acarina: Phytoseiidae): Genetic improvement of a spider mite predator. Ph.D. dissertation. Univ. Calif., Berkeley.Google Scholar
  126. Roush, R. T. 1989a. Designing resistance management programs: How can you choose? Pest. Sci. 26: 423–441.CrossRefGoogle Scholar
  127. Roush, R. T. 1989b. Genetic considerations in the propagation of entomophagous species, pp. 373 – 387. In R. Baker and P. Dunn (eds.), New Directions in Biological Control, UCLA Symposia on Molecular and Cellular Biology, New Series, Vol. 112. Alan R. Liss, New York.Google Scholar
  128. Roush, R. T., and B. A. Croft. 1986. Experimental population genetics and ecological studies of pesticide resistance in insects and mites, pp. 257–270. In National Research Council (ed.), Pesticide resistance: strategies and tactics for management. National Academy Press, Washington, D.C.Google Scholar
  129. Roush, R. T., and M. A. Hoy. 1981. Laboratory, glasshouse, and field studies of artificially selected carbaryl resistance in Metaseiulus occidentalis. J. Econ. Entomol. 74: 142–147.Google Scholar
  130. Roush, R. T., and J. A. McKenzie. 1987. Ecological genetics of insecticide and acaricide resistance. Annu. Rev. Entomol. 32: 361–380.PubMedCrossRefGoogle Scholar
  131. Roush, R. T., and G. L. Miller. 1986. Considerations for design of insecticide resistance monitoring programs. J. Econ. Entomol. 79: 293–298.Google Scholar
  132. Roush, R. T., and F. W. Plapp, Jr. 1982a. Biochemical genetics of resistance to aryl carbamate insecticides in the predaceous mite, Metaseiulus occidentalis. J. Econ. Entomol. 75: 304–307.Google Scholar
  133. Roush, R. T., and F. W. Plapp, Jr. 1982b. Effects of insecticide resistance on biotic potential of the house fly (Diptera: Muscidae). J. Econ. Entomol. 75: 708–713.PubMedGoogle Scholar
  134. Roush, R. T., and D. A. Wolfenbarger. 1985. Inheritance of resistance to methomyl in the tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 78: 1020–1022.Google Scholar
  135. Roush, R. T., R. L. Combs, T. C. Randolph, J. MacDonald, and J. Hawkins. 1986. Inheritance and effective dominance of pyrethroid resistance in the horn fly. (Diptera: Muscidae). J. Econ. Entomol. 79: 1178–1182.PubMedGoogle Scholar
  136. Roush, R. T., C. W. Hoy, D. N. Ferro, and W. M. Tingey. 1990. Insecticide resistance in Colorado potato beetles (Coleoptera: Chrysomelidae): Influence of crop rotation and insecticide use. J. Econ. Entomol. 83: 315–319.Google Scholar
  137. Rowland, M. 1988. Management of gamma HCH/dieldrin resistance in mosquitoes-a strategy for all insects?, pp. 495–500. In 1988 Proceedings, British Crop Protection Conference on Pests and Diseases, Brighton. The British Crop Protection Council, Surrey.Google Scholar
  138. Sawicki, R. M. 1974. Genetics of resistance of a dimethoate-selected strain of houseflies (Musca domestica L.) to several insecticides and methyenedioxyphenyl synergists. J. Agr. Food Chem. 22: 344–349.CrossRefGoogle Scholar
  139. Sawicki, R. M. 1975. Effects of sequential resistance on pesticide management, pp. 799–808. In Proceedings 8th British Insecticide and Fungicide Conference, Nov. 17–20, 1975, Brighton, England, Vol. 1. British Crop Prot. Council, London.Google Scholar
  140. Sawicki, R. M., A. L. Devonshire, A. W. Farnham, K. E. O’Dell, G. D. Moores and I. Denholm. 1984. Factors affecting resistance to insecticides in house-flies, Musca domestica L. (Diptera: Muscidae). II. Close linkage on autosome 2 between an esterase and resistance to trichlorphon and pyrethroids. Bull. Entomol. Res. 74: 197–206.CrossRefGoogle Scholar
  141. Schimke, R. T., S. W. Sherwood, A. B. Hill, and R. N. Johnston. 1986. Overreplication and recombination of DNA in higher eukaryotes: potential consequences and biological implications. Proc. Natl. Acad. Sci. 83: 2157–2161.PubMedCrossRefGoogle Scholar
  142. Schmidt, C. H. and G. C. LaBreque. 1959. Acceptability and toxicity of poisoned baits to house flies resistant to organophosphorous insecticides. J. Econ. Entomol. 52: 345–346.Google Scholar
  143. Schnitzerling, H. J., W. J. Roulston, and C. A. Schunter. 1970. The absorption and metabolism of 14C DDT in DDT-resistant and susceptible strains of the cattle tick, Boophilus microplus. Aust. J. Biol. Sci. 23: 219–230.Google Scholar
  144. Scott, J. G., R. T. Roush, and D. A. Rutz. 1989. Insecticide resistance of house flies from New York dairies (Diptera: Muscidae). J. Agric. Entomol. 6: 53–64.Google Scholar
  145. Shanahan, G. J. 1961. Genetics of dieldrin resistance in Lucilia cuprina (Wied.). Genetica Agaria 14: 307–321.Google Scholar
  146. Shanahan, G. J. 1979. Genetics of diazinon resistance in larvae of Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Bull. Entomol. Res. 69: 225–228.CrossRefGoogle Scholar
  147. Smissaert, H. R. 1964. Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate. Science 143: 129–131.PubMedCrossRefGoogle Scholar
  148. Sparks, T. C. 1981. Development of insecticide resistance in Heliothis zea and Heliothis virescens in North America. Bull. Entomol. Soc. Am. 27: 186–192.Google Scholar
  149. Sparks, T. C., J. A. Lockwood, R. L. Byford, J. B. Graves, and B. R. Leonard. 1989. The role of behavior in insecticide resistance. Pest. Sci. 26: 383–399.CrossRefGoogle Scholar
  150. Stone, B. F. 1962a. The inheritance of dieldrin-resistance in the cattle tick, Boophilus microplus. Aust. J. Agric. Res. 13: 1008–1022.CrossRefGoogle Scholar
  151. Stone, B. F. 1962b. The inheritance of DDT-resistance in the cattle tick, Boophilus microplus. Aust. J. Agric. Res. 13: 984–1007.CrossRefGoogle Scholar
  152. Stone, B. F. 1968. A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bull. WHO 38: 325–326.PubMedGoogle Scholar
  153. Stone, B. F. 1972. The genetics of resistance by ticks to acaricides. Aust. Vet. J. 48: 345–350.PubMedCrossRefGoogle Scholar
  154. Stone, B. F. 1981. A review of the genetics of resistance to acaricidal organochlorine and organophosphorous compounds with particular reference to the cattle tick Boophilus microplus, pp. 95–102. In G. B. Whitehead and J. D. Gibson (eds.), Tick Biology and control. Grahamstown, Rhodes Univ., Tick Res. Unit.Google Scholar
  155. Stone, B. F., J. Nolan and C. A. Schuntner. 1976. Biochemical genetics of resistance to organophosphorous acaricides in three strains of the cattle tick, Boophilus microplus. Aust. J. Biol. Sci. 29: 265–279.Google Scholar
  156. Stone, B. F. and N. J. Youlton. 1982. Inheritance of resistance to chlorpyrifos in the Mt Alford strain and to diazinon in the Gracemere strain of the cattle tick (Boophilus microplus). Aust. J. Biol. Sci. 35: 427–440.PubMedGoogle Scholar
  157. Sun, C-N., H. Chi, and H-T. Feng. 1978. Diamondback moth resistance to diazinon and methomyl in Taiwan. J. Econ. Entomol. 71: 551–554.Google Scholar
  158. Sutherst, R. W. 1983. Management of arthropod parasitism in livestock, pp. 41–56. In J. D. Dunsmore (ed.), Tropical parasitoses and parasitic zoonoses. 10th Int. Conf., World Association for the Advancement of Veterinary Parasitology, Perth.Google Scholar
  159. Sutherst, R. W., and H. N. Comins. 1979. The management of acaricide resistance in the cattle tick, Boophilus microplus (Canestrini) (Acari: Ixodidae), in Australia. Bull. Entomol. Res. 69:519–537.CrossRefGoogle Scholar
  160. Sutherst, R. W., G. A. Norton, N. D. Barlow, G. R. Conway, M. Birley, and H. N. Comins. 1979. An analysis of management strategies for cattle tick (Boophilus microplus) control in Australia. J. Appl. Ecol. 16: 359–382.CrossRefGoogle Scholar
  161. Tabashnik, B. E. 1989. Managing resistance with multiple pesticide tactics: theory, evidence, and recommendations. J. Econ. Entomol. 82: 1263–1269.PubMedGoogle Scholar
  162. Tabashnik, B. E., and B. A. Croft. 1982. Managing pesticide resistance in crop-arthropod complexes: interactions between biological and operational factors. Environ. Entomol. 11: 1137–1144.Google Scholar
  163. Tabashnik, B. E., and N. L. Cushing. 1989. Quantitative genetic analysis of insecticide resistance: variation in fenvalerate tolerance in a diamondback moth (Lepidoptera: Plutellidae) population. J. Econ. Entomol. 82: 5–10.Google Scholar
  164. Tabashnik, B. E., N. L. Cushing, and M. W. Johnson. 1987. Diamondback moth (Lépidoptère: Plutellidae) resistance to insecticides in Hawaii: intra-island variation and cross-resistance. J. Econ. Entomol. 80: 1091–1099.Google Scholar
  165. Taylor C. E., and G. P. Georghiou. 1979. Suppression of insecticide resistance by alteration of gene dominance and migration. J. Econ. Entomol. 72: 105–109.Google Scholar
  166. Taylor C. E., F. Quaglia, and G. P. Georghiou. 1983. Evolution of resistance to insecticides: a cage study on the influence of migration and insecticide decay rates. J. Econ. Entomol. 76: 704–707.Google Scholar
  167. Thomas, V. 1966. Inheritance of DDT resistance in Culex pipiens fatigans Wiedemann. J. Econ. Entomol. 59: 779–786.Google Scholar
  168. Tsukamoto, M. 1963. The log dosage-probit mortality curve in genetic researches of insect resistance to insecticides. Botyu-Kagaku 28: 91–98.Google Scholar
  169. Tsukamoto, M. 1983. Methods of genetic analysis of insecticide resistance, pp. 71–98. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum Press, New York.CrossRefGoogle Scholar
  170. Uyenoyama, M. K. 1986. Pleiotropy and the evolution of genetic systems conferring resistance to pesticides, pp. 207–221. In National Academy of Sciences (ed.), Pesticide resistance: strategies and tactics for management. National Academy Press, Washington, D.C.Google Scholar
  171. Via, S. 1986. Quantitative genetic models and the evolution of pesticide resistance, pp. 222–235. In National Academy of Sciences (ed.), Pesticide resistance: strategies and tactics for management. National Academy Press, Washington, D.C.Google Scholar
  172. Wharton, R. H. 1976. Tick-borne livestock diseases and their vectors. 5. Acaricide resistance and alternative methods of tick control. World Anim. Rev. 20: 8–15.Google Scholar
  173. Wharton, R. H., K. L. S. Harley, P. R. Wilkinson, K. B. Utech, and B. M. Kelly. 1969. A comparison of cattle tick control by pasture spelling, planned dipping, and tick-resistant cattle. Aust. J. Agric. Res. 20: 783–797.CrossRefGoogle Scholar
  174. Wharton, R. H. and K. R. Norris. 1980. Control of parasitic arthropods. Vet. Parasitol. 6: 135–164.CrossRefGoogle Scholar
  175. White, N. D. G., and R. J. Bell. 1988. Inheritance of malathion resistance in a strain of Tribolium castaneum (Coleoptera: Tenebrionidae) and effects of resistance genotypes on fecundity and larval survival in malathion-treated wheat. J. Econ. Entomol. 81: 381–386.Google Scholar
  176. Whitehead, J. R., R. T. Roush, and B. R. Norment. 1985. Resistance stability and coadaptation in diazinon-resistant house flies (Diptera: Muscidae). J. Econ. Entomol. 78: 25–29.PubMedGoogle Scholar
  177. Whitten, M. J. and J. A. McKenzie. 1982. The genetic basis for pesticide resistance, pp. 1–16. In K. E. Lee (ed.) Proc. 3rd. Aust. Conf. Grassland Invertebrate Ecology. South Australia. Govt. Printer, Adelaide.Google Scholar
  178. Wilson, A. G. L. 1974. Resistance of Heliothis armigera to insecticides in the Ord Irrigation Area, North Western Australia. J. Econ. Entomol. 67: 256–258.PubMedGoogle Scholar
  179. Wilson, T. G. 1988. Drosophila melanogaster (Diptera: Drosophilidae): a model insect for insecticide resistance studies. J. Econ. Entomol. 81: 22–27.PubMedGoogle Scholar
  180. Wilson, T. G., and J. Fabian. 1986. A Drosophila melanogaster mutant resistant to a chemical analog of juvenile hormone. Develop. Biol. 118: 190–201.PubMedCrossRefGoogle Scholar
  181. Wilson, T. G., and J. Fabian. 1987. Selection of methoprene-resistant mutants of Drosophila melanogaster, pp. 179–188. In J. Law (ed.) Molecular entomology. Alan R. Liss, New York.Google Scholar
  182. Wood, R. J., and J. A. Bishop. 1981. Insecticide resistance: populations and evolution, pp. 97–127. In J. A. Bishop and L. M. Cook (eds.), Genetic consequences of man made change. Academic Press, New York.Google Scholar
  183. Wright, S. 1931. Evolution in Mendelian populations. Genetics 16: 97–159.PubMedGoogle Scholar
  184. Yarbrough, J. D., R. T. Roush, J. C. Bonner, and D. A. Wise. 1986. Monogenic inheritance of cyclodiene resistance in mosquito fish, Gambusia affinis. Experientia 42: 851–853.PubMedCrossRefGoogle Scholar
  185. Yust, H. R., and F. F. Shelden. 1952. A study of the physiology of resistance to hydrocyanic acid in the California red scale. Ann. Entomol. Soc. Am. 45: 220–228.Google Scholar
  186. Yust, H. R., H. D. Nelson, and R. L. Busbey. 1943. Comparative susceptibility of two strains of California red scale to HCN, with special reference to the inheritance of resistance. J. Econ. Entomol. 36: 744–749.Google Scholar
  187. Zalucki, M. P., G. Daglish, S. Firempong, and P. Twine. 1986. The biology and ecology of Heliothis armigera (Hübner) and H. punctigera Wallengren (Lepidoptera: Noctuidae) in Australia: what do we know? Aust. J. Zool. 34: 779–814.CrossRefGoogle Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • Richard T. Roush
  • Joanne C. Daly

There are no affiliations available

Personalised recommendations