Advertisement

Molecular Mechanisms of Insecticide Resistance

  • David M. Soderlund
  • Jeffrey R. Bloomquist

Abstract

Four decades of intensive use of synthetic organic insecticides to control arthropod pests and disease vectors have led to the selection of insecticide or acaricide resistance in approximately 450 arthropod species (Georghiou 1986). In the most extreme cases, such as the Colorado potato beetle (Leptinotarsa decemlineata) in parts of the eastern United States, populations are resistant to virtually all chemicals available for control (Forgash 1984). The deleterious consequences of pesticide resistance in arthropods include increased levels of environmental contamination and risks of applicator and agricultural worker exposure from higher rates of pesticide application; increases in pest control costs; disruption of ecologically sound pest control strategies; increased incidence of human, animal, and plant diseases in which transmission depends on insect vectors; and, in the most extreme case, the complete destruction of agricultural production systems on a local or regional basis.

Keywords

Sodium Channel Insecticide Resistance Musca Domestica Pyrethroid Resistance Neuronal Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abalis, I. M., M. E. Eldefrawi, and A. T. Eldefrawi. 1985. High-affinity binding of cyclodiene insecticides and y-hexachlorocyclohexane to y-aminobutyric acid receptors of rat brain. Pestic. Biochem. Physiol. 24: 95–102.Google Scholar
  2. Abalis, I. M., M. E. Eldefrawi, and A. T. Eldefrawi. 1986. Effects of insecticides on GABA-induced chloride influx into rat brain microsacs. J. Toxicol. Environ. Health 18: 13–23.PubMedGoogle Scholar
  3. Agosin, M. 1985. Role of microsomal oxidations in insecticide degradation, pp. 647–712. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive insect physiology biochemistry and pharmacology, Vol. 12. Pergamon, Oxford.Google Scholar
  4. Ann, Y.-J., T. Shono, and J. Fukami. 1986. Inheritance of pyrethroid resistance in a housefly strain from Denmark. J. Pestic. Sci. 11: 591–5%.Google Scholar
  5. Ahn, Y.-J., E. Funaki, N. Motoyama, T. Shono, and J. Fukami. 1987. Nerve insensitivity as a mechanism of resistance to pyrethroids in a Japanese colony of house flies. J. Pestic. Sci. 12: 69–75.Google Scholar
  6. Beckendorf, S. K., and M. A. Hoy. 1985. Genetic improvement of arthropod natural enemies through selection, hybridization, or genetic engineering techniques, pp. 167–187. In M. A. Hoy and D. C. Herzog (eds.), Biological control in agricultural IPM systems. Academic, Orlando.Google Scholar
  7. Beeman, R. W., and B. A. Schmidt. 1982. Biochemical and genetic aspects of malathion-specific resistance in the Indian mealmoth (Lepidoptera: Pyralidae). J. Econ. Entomol. 75: 945–949.Google Scholar
  8. Berge, J. B., C. Mouches, and D. Fournier. 1986. Molecular biology of some insecticide resistant genes suitable to improve resistance in beneficial arthropods. Abstract 3E-14, VIth Int. Cong. Pestic. Chem. Ottawa.Google Scholar
  9. Bloomquist, J. R., and T. A. Miller. 1985. A simple bioassay for detecting and characterizing insecticide resistance. Pestic. Sci. 16: 611–614.Google Scholar
  10. Bloomquist, J. R., and T. A. Miller. 1986. Sodium channel neurotoxins as probes of the knockdown resistance mechanism. Neurotoxicology 7: 217–224.PubMedGoogle Scholar
  11. Bloomquist, J. R., and D. M. Soderlund. 1985. Neurotoxic insecticides inhibit GABA-dependent chloride uptake into mouse brain vesicles. Biochem. Biophys. Res. Commun. 133: 37–43.PubMedGoogle Scholar
  12. Bloomquist, J. R., P. M. Adams, and D. M. Soderlund. 1986. Inhibition of γ-aminobutyric acid-stimulated chloride flux in mouse brain vesicles by polychlorocycloalkane and pyrethroid insecticides. Neurotoxicology 7: 11–20.PubMedGoogle Scholar
  13. Bloomquist, J. R., D. M. Soderlund, and D. C. Knipple. 1989. Knockdown resistance to dichlorodiphenyltrichloroethane and pyrethroid insecticides in the nap” mutant of Drosophila melanogaster is correlated with reduced neuronal sensitivity. Arch. Insect Biochem. Physiol. 10: 293–302.Google Scholar
  14. Booth, G. M., D. J. Weber, L. M. Ross, S. D. Burton, W. S. Bradshaw, W. M. Hess, and J. R. Larsen. 1983. Mechanisms of pesticide resistance in non-target organisms, pp. 387–409. In G. P. Georghiou and T. Saito (eds), Pest resistance to pesticides. Plenum, New York.Google Scholar
  15. Brealey, C. J., P. L. Crampton, P. R. Chadwick, and F. E. Rickett. 1984. Resistance mechanisms to DDT and transpermethrin in Aedes aegypti. Pestic. Sci. 15: 121–132.Google Scholar
  16. Brooks, G. T. 1974. Chlorinated insecticides, Vol. II, Biological and environmental aspects, pp. 3–62. CRC Press, Cleveland.Google Scholar
  17. Brown, G. B., J. E. Gaupp, and R. W. Olsen. 1988. Pyrethroid insecticides: stereospecific allosteric interaction with the batrachotoxinin-A benzoate binding site of mammalian voltage-sensitive sodium channels. Mol. Pharmacol. 34: 54–59.Google Scholar
  18. Brown, T. M., and W. G. Brogdon. 1987. Improved detection of insecticide resistance through conventional and molecular techniques. Ann. Rev. Entomol. 32: 145–162.Google Scholar
  19. Brown, T. M., and G. T. Payne. 1986. Synergists for permethrin in Heliothis virescens. Abstract 3D-17, Vlth Int. Congr. Pestic. Chem. Ottawa.Google Scholar
  20. Burt, P. E., M. Elliott, A. W. Farnham, N. F. Janes, P. H. Needham, and D. A. Pulman. 1974. The Pyrethrins and related compounds. Part XIX, Geometrical and optical isomers of 2,2-dimethyl-3-(2,2-dichlorovinyl)-cyclopropanecarboxylic acid and insecticidal esters with 5-benzyl-3-furyl-methyl and 3-pehnoxybenzyl alcohols. Pestic. Sci. 5: 791–799.Google Scholar
  21. Busvine, J. R. 1951. Mechanism of resistance to insecticide in house flies. Nature 168: 193–195.PubMedGoogle Scholar
  22. Capdevila, J., N. Ahmad, and M. Agosin. 1975. Soluble cytochrome P-450 from house fly microsomes. Partial purification and characterization of two hemoprotein forms. J. Biol. Chem. 250: 1048–1060.Google Scholar
  23. Catterall, W. A. 1986. Molecular properties of voltage-sensitive sodium channels. Ann. Rev. Biochem. 55: 953–985.PubMedGoogle Scholar
  24. Chadwick, P. R., J. F. Invest, and M. J. Bowron. 1977. An example of cross-resistance to pyrethroids in DDT-resistant Aedes aegypti. Pestic. Sci. 8: 618–624.Google Scholar
  25. Chadwick, P. R., R. Slatter, and M. J. Bowron. 1984. Cross-resistance to pyrethroids and other insecticides in Aedes aegypti. Pestic. Sci. 15: 112–120.Google Scholar
  26. Chang, C. P., and F. W. Plapp, Jr. 1983a. DDT and pyrethroids: receptor binding and mode of action in the house fly. Pestic. Biochem. Physiol. 20: 76–85.Google Scholar
  27. Chang, C. P., and F. W. Plapp, Jr. 1983b. DDT and pyrethroids: receptor binding in relation to knockdown resistance (kdr) in the house fly. Pestic. Biochem. Physiol. 20: 86–91.Google Scholar
  28. Chang, C. K., and M. E. Whalon. 1986. Hydrolysis of permethrin by pyrethroid esterases from resistant and susceptible strains of Amblyseius fallacis (Acari: Phytoseiidae). Pestic. Biochem. Physiol. 25: 446–452.Google Scholar
  29. Chiang, C., and A. L. Devonshire. 1982. Changes in membrane phospholipids, identified by Arrhenius plots of acetylcholinesterase and associated with pyrethroid resistance (kdr) in house flies (Musca domestica). Pestic. Sci. 13: 156–160.Google Scholar
  30. Clark, A. G., and W. C. Dauterman. 1982. The characterization by affinity chromatography of glutathione S-transferases from different strains of house fly. Pestic. Biochem. Physiol. 17: 307–314.Google Scholar
  31. Clark, A. G., and N. A. Shamaan. 1984. Evidence that DDT-dehydrochlorinase from the house fly is a glutathione S-transferase. Pestic. Biochem. Physiol. 22: 249–261.Google Scholar
  32. Clark, A. G., N. A. Shamaan, W. C. Dauterman, and T. Hayaoka. 1984. Characterization of multiple glutathione transferases from the house fly, Musca domestica (L). Pestic. Biochem. Physiol. 22: 51–59.Google Scholar
  33. Clark, A. G., N. A. Shamaan, M. D. Sinclair, and W. C. Dauterman. 1986. Insecticide metabolism by multiple glutathione S-transferases in two strains of the house fly, Musca domestica (L). Pestic. Biochem. Physiol. 25: 169–175.Google Scholar
  34. Cohen, E., and J. E. Casida. 1986. Effects of insecticides and GABAergic agents on a house fly [35S]t-butylbicyclophosphorothionate binding site. Pestic. Biochem. Physiol. 25: 63–72.Google Scholar
  35. Dauterman, W. C. 1983. Role of hydrolases and glutathione S-transferases in insecticide resistance, pp. 229–247. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.Google Scholar
  36. Dauterman, W. C. 1985. Insect metabolism: extramicrosomal, pp. 713–730. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive insect physiology biochemistry and pharmacology, Vol. 12. Pergamon, Oxford.Google Scholar
  37. de Jersey, J., J. Nolan, P. A. Davey, and P. W. Riddles. 1985. Separation and characterization of the pyrethroid-hydrolyzing esterases of the cattle tick, Boophilus microplus. Pestic. Biochem. Physiol. 23: 349–357.Google Scholar
  38. Delorme, R., D. Fournier, J. Chaufaux, A. Cuany, J. M. Bride, D. Auge, and J. B. Berge. 1988. Esterase metabolism and reduced penetration are causes of resistance to deltamethrin in Spodoptera exigua HUB (Noctuidae: Lepidoptera). Pestic. Biochem. Physiol. 32: 240–246.Google Scholar
  39. Devonshire, A. L. 1975. Studies of the carboxylesterases of Myzus persicae resistant and susceptible to organophosphorus insecticides. Proc. 8th Brit. Insectic. Fungic. Conf. 1: 67–73.Google Scholar
  40. Devonshire, A. L. 1977. The properties of a carboxylesterase from the peach-potato aphid, Myzus persicae (Sulz.), and its role in conferring insecticide resistance. Biochem. J. 167: 675–683.PubMedGoogle Scholar
  41. Devonshire, A. L. 1987. Biochemical studies of organophosphorus and carbamate resistance in house flies and aphids, pp. 239–255. In M. G. Ford, D. W. Holloman, B. P. S. Khambay, and R. Sawicki (eds.), Combatting resistance to xenobiotics: biological and chemical approaches. Ellis Horwood, Chichester.Google Scholar
  42. Devonshire, A. L., and G. D. Moores. 1982. A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate, and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pestic. Biochem. Physiol. 18: 235–246.Google Scholar
  43. Devonshire, A. L., and G. D. Moores. 1984a. Characterization of insecticide-insensitive acetylcholinesterase: microcomputer-based analysis of enzyme inhibition in homogenates of individual house fly (Musca domestica) heads. Pestic. Biochem. Physiol. 21: 341–348.Google Scholar
  44. Devonshire, A. L., and G. D. Moores. 1984b. Different forms of insensitive acetylcholinesterase in insecticide-resistant house flies (Musca domestica). Pestic. Biochem. Physiol. 21: 336–340.Google Scholar
  45. Devonshire, A. L., and R. Sawicki. 1979. Insecticide-resistant Myzus persicae as an example of evolution by gene duplication. Nature 280: 140–141.Google Scholar
  46. Devonshire, A. L., G. D. Moores, and C. Chiang. 1983. The biochemistry of insecticide resistance in the peach-potato aphid, Myzus persicae, pp. 191–1%. In J. Miyamoto and P. C. Kearney (eds.), Pesticide chemistry: human welfare and environment, Vol. 3. Pergamon, Oxford.Google Scholar
  47. De Vries, D. H., and G. P. Georghiou. 1981a. Absence of enhanced detoxication of permethrin in pyrethroid-resistant house flies. Pestic. Biochem. Physiol. 15: 242–252.Google Scholar
  48. De Vries, D. H., and G. P. Georghiou. 1981b. Decreased nerve sensitivity and decreased cuticular penetration as mechanisms of resistance to pyrethroids in a (lR)-trans-permethrin-selected strain of the house fly. Pestic. Biochem. Physiol. 15: 234–241.Google Scholar
  49. Dowd, P. F., C. C. Gagne, and T. C. Sparks. 1987. Enhanced pyrethroid hydrolysis in pyrethroid-resistant larvae of the tobacco budworm, Heliothis virescens (F.). Pestic. Biochem. Physiol. 28:9–16.Google Scholar
  50. Farnham, A. W. 1977. Genetics of resistance of house flies (Musca domestica L.) to pyrethroids. I. Knockdown resistance. Pestic. Sci. 8: 631–636.Google Scholar
  51. Farnham, A. W., A. W. A. Murray, R. M. Sawicki, I. Denholm, and J. C. White. 1987. Characterization of the structure-activity relationship of kdr and two variants of super-Mr to pyrethroids in the house fly (Musca domestica L.). Pestic. Sci. 19: 209–220.Google Scholar
  52. Feyereisen, R., J. F. Koener, D. E. Farnsworth, and D. W. Nebert. 1989. Isolation and sequence of cDNA encoding a cytrochrome P-450 from an insecticide-resistant strain of the house fly, Musca domestica. Proc. Natl. Acad. Sci. USA 86: 1465–1469.PubMedGoogle Scholar
  53. Field, L. M., A. L. Devonshire, and B. G. Forde. 1988. Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem. J. 251: 309–312.PubMedGoogle Scholar
  54. Fisher, C. W., and R. T. Mayer. 1984. Partial purification and characterization of phenobarbital-induced house fly cytochrome P-450. Arch. Insect Biochem. Physiol. 1: 127–138.Google Scholar
  55. Forgash, A. J. 1984. History, evolution, and consequences of insecticide resistance. Pestic. Biochem. Physiol. 22: 178–186.Google Scholar
  56. Fournier, D., J.-M. Bride, C. Mouches, M. Raymond, M. Magnin, J.-B. Berge, N. Pasteur, and G. P. Georghiou. 1987. Biochemical characterization of the esterases A1 and B1 associated with organophosphate resistance in the Culex pipiens L. complex. Pestic. Biochem. Physiol. 27: 211–217.Google Scholar
  57. Gammon, D. W. 1980. Pyrethroid resistance in a strain of Spodoptera littoralis is correlated with decreased sensitivity of the CNS in vitro. Pestic. Biochem. Physiol. 13: 53–62.Google Scholar
  58. Gant, D. B., M. E. Eldefrawi, and A. T. Eldefrawi. 1987. Cyclodiene insecticides inhibit GABAA receptor-regulated chloride transport. Toxicol. Appl. Pharmacol. 88: 313–321.PubMedGoogle Scholar
  59. Georghiou, G. P. 1986. The magnitude of the resistance problem, pp. 14–43. In Pesticide resistance: strategies and tactics for management. National Academy Press, Washington, DC.Google Scholar
  60. Georghiou, G. P., and N. Pasteur. 1978. Electrophoretic esterase patterns in insecticide-resistant and susceptible mosquitoes. J. Econ. Entomol. 71: 201–205.PubMedGoogle Scholar
  61. Georghiou, G. P., and N. Pasteur. 1980. Organophosphate resistance and esterase pattern in a natural population of the southern house mosquito from California. J. Econ. Entomol. 73: 489–492.Google Scholar
  62. Georghiou, G. P., N. Pasteur, and M. K. Hawley. 1980. Linkage relationships between organophosphate resistance and a highly active esterase-B in Culex quinquefasciatus from California. J. Econ. Entomol. 73: 301–305.PubMedGoogle Scholar
  63. Georghiou, G. P., V. Ariaratnam, M. E. Pasternak, and C. S. Lin. 1985. Organophosphate multiresistance in Culex pipiens quinquefasciatus in California. J. Econ. Entomol. 68: 461–467.Google Scholar
  64. Grubs, R. E., P. M. Adams, and D. M. Soderlund. 1988. Binding of [3H]saxitoxin to head membrane preparations from susceptible and knockdown-resistant house flies. Pestic. Biochem. Physiol. 32: 217–223.Google Scholar
  65. Hall, L. M. 1986. Genetic variants of voltage-sensitive sodium channels, pp. 313–324. In C. Y. Kao and S. R. Levinson (eds.), Tetrodotoxin, saxitoxin, and the molecular biology of the sodium channel. New York Academy of Sciences, New York.Google Scholar
  66. Hall L. M., and D. P. Kasbekar. 1989. Drosophila sodium channel mutations affect pyrethroid sensitivity, pp. 99–114. In T. Narahashi and J. Chambers (eds.), Insecticide action: from molecule to organism. Plenum, New York.Google Scholar
  67. Hall, L. M. C., and P. Spierer. 1986. The Ace locus of Drosophila melanogaster. structural gene for acetylcholinesterase with an unusual 5’ leader. EMBO J. 5: 2949–2954.PubMedGoogle Scholar
  68. Halliday, W. R., and G. P. Georghiou. 1985. Inheritance of resistance to permethrin and DDT in the southern house mosquito (Diptera: Culicidae). J. Econ. Entomol. 78: 762–767.Google Scholar
  69. Hama, H. 1983. Resistance to insecticides due to reduced sensitivity of acetylcholinesterase, pp. 299–331. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.Google Scholar
  70. Hammock, B.D., and D. M. Soderlund. 1986. Chemical strategies for resistance management, pp. 111–129. In Pesticide resistance: strategies and tactics for management. National Academy Press, Washington, DC.Google Scholar
  71. Hayaoka, T., and W. C. Dauterman. 1982. Induction of glutathione S-transferase by phenobarbital and pesticides in various house fly strains and its effect on toxicity. Pestic. Biochem. Physiol. 17: 113–119.Google Scholar
  72. Hayaoka, T., and W. C. Dauterman. 1983. The effect of phénobarbital induction on glutathione conjugation of diazinon in susceptible and resistant house flies. Pestic. Biochem. Physiol. 19:344–349.Google Scholar
  73. Hemingway, J. 1982. The biochemical nature of malathion resistance in Anopheles stephensi from akistan. Pestic. Biochem. Physiol. 17: 149–155.Google Scholar
  74. Hemingway, J. 1983. Biochemical studies on malathion resistance in Anopheles arabiensis from Sudan. Trans. R. Soc. Trop. Med. Hyg. 77: 477–480.PubMedGoogle Scholar
  75. Hemingway, J. 1984. The joint action of malathion and IBP against malathion-resistant Anopheles stephensi. Bull. World Health Org. 62: 445–449.PubMedGoogle Scholar
  76. Hemingway, J. 1985. Malathion carboxylesterase enzymes in Anopheles arabiensis from Sudan. Pestic. Biochem. Physiol. 23: 309–313.Google Scholar
  77. Hemingway, J., C. Smith, K. G. Jayawardena, and P. R. J. Herath. 1986. Field and laboratory detection of the altered acetylcholinesterase resistance genes which confer organophosphate and carbamate resistance in mosquitoes (Diptera: Culicidae). Bull. Entomol. Res. 76: 559–565.Google Scholar
  78. Hodgson, E. 1983. The significance of cytochrome P-450 in insects. Insect Biochem. 13: 237–246.Google Scholar
  79. Hodgson, E. 1985. Microsomal mono-oxygenases, pp. 225–321. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive insect physiology biochemistry and pharmacology, Vol. 11. Pergamon, Oxford.Google Scholar
  80. Hodgson, E., and A. P. Kulkarni. 1983. Characterization of cytochrome P-450 in studies of insecticide resistance, pp. 207–228. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.Google Scholar
  81. Holden, J. S. 1979. Absorption and metabolism of permethrin and Cypermethrin in the cockroach and the cotton-leafworm larvae. Pestic. Sci. 10: 295–307.Google Scholar
  82. Jackson, F. R., S. D. Wilson, G. R. Strichartz, and L. M. Hall. 1984. Two types of mutants affecting voltage-sensitive sodium channels in Drosophila melanogaster. Nature 308: 189–191.PubMedGoogle Scholar
  83. Kadous, A. A., S. M. Ghiasuddin, F. Matsumura, J. G. Scott, and K. Tanaka. 1983. Difference in the picrotoxinin receptor between the cyclodiene-resistant and susceptible strains of the German cockroach. Pestic. Biochem. Physiol. 19: 157–166.Google Scholar
  84. Kao, L. R., N. Motoyama, and W. C. Dauterman. 1984. Studies on hydrolases in various house fly strains and their role in malathion resistance. Pestic. Biochem. Physiol. 22: 86–92.Google Scholar
  85. Kao, L. R., N. Motoyama, and W. C. Dauterman. 1985. The purification and characterization of esterases from insecticide-resistant and susceptible house flies. Pestic. Biochem. Physiol. 23: 228–239.Google Scholar
  86. Kasbekar, D. P., and L. M. Hall. 1988. A Drosophila mutation that reduces sodium channel number confers resistance to pyrethroid insecticides. Pestic. Biochem. Physiol. 32: 135–145.Google Scholar
  87. Lawrence, L. J., and J. E. Casida. 1984. Interactions of lindane, toxaphene, and cyclodienes with brain-specific r-butylbicyclophosphorothionate receptor. Life Sci. 35: 171–178.PubMedGoogle Scholar
  88. Lester, H. A. 1988. Heterologous expression of excitability proteins: route to more specific drugs? Science 241: 1057–1063.PubMedGoogle Scholar
  89. Levitan, E. S., P. R. Schofield, D. R. Burt, L. M. Rhee, S. Wisden, M. Koehler, N. Fujita, H. F. Rodriguez, A. Stephenson, M. G. Darlison, E. A. Barnard, and P. H. Seeburg. 1988. Structural and functional basis for GABAA receptor heterogeneity. Nature 335: 76–79.PubMedGoogle Scholar
  90. Lombet, A., C. Mourre, and M. Lazdunski. 1988. Interaction of insecticides of the pyrethroid family with specific binding sites on the voltage-dependent sodium channel from mammalian brain. Brain Res. 459: 44–53.PubMedGoogle Scholar
  91. Loughney, K., R. Kreber, and B. Ganetzky. 1989. Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell 58: 1143–1154.PubMedGoogle Scholar
  92. Maa, W. C. J., and L. C. Terriere. 1983. Age-dependent variation in enzymatic and electrophoretic properties of house fly (hf. domestical carboxylesterases. Comp. Biochem. Physiol. 74C: 461–467.Google Scholar
  93. Malcolm, C. A. 1983a. The genetic basis of pyrethroid and DDT resistance inter-relationships in Aedes aegypti. I. Isolation of DDT and pyrethroid resistance factors. Genetica 60: 213–219.Google Scholar
  94. Malcolm, C. A. 1983b. The genetic basis of pyrethroid and DDT resistance inter-relationships in Aedes aegypti. U. Allelism of R DDT2 and Rw. Genetica 60: 221–229.Google Scholar
  95. Malcolm, C. A., and R. J. Wood. 1982a. The establishment of a laboratory strain of Aedes aegypti homogeneous for high resistance to permethrin. Pestic. Sci. 13: 104–108.Google Scholar
  96. Malcolm, C. A., and R. J. Wood. 1982b. Location of a gene conferring resistance to knockdown by permethrin and bioresmethrin in adults of the BKPM3 strain of Aedes aegypti. Genetica 59: 233–237.Google Scholar
  97. Matsumura, F. 1983. Penetration, binding, and target insensitivity as causes of resistance to chlorinated hydrocarbon insecticides, pp. 367–386. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.Google Scholar
  98. Matsumura, F., and S. M. Ghiasuddin. 1983. Evidence for similarities between cyclodiene type insecticides and picrotoxinin in their action mechanisms. J. Environ. Sci. Health B18: 1–14.Google Scholar
  99. Matsumura, F., and G. Voss. 1965. Properties of partially purified malathion carboxylesterase of the two-spotted spider mite. J. Insect Physiol. 11: 147–160.PubMedGoogle Scholar
  100. Milani, R. 1954. Comportamento mendeliano della resistenza alla azione abbattante del DDT: correlazione tran abbattimento e mortalita in Musca domestica L. Riv. Parassitol. 15: 513–542.Google Scholar
  101. Miller, T. A., J. M. Kennedy, and C. Collins. 1979. CNS insensitivity to pyrethroids in the resistant kdr strain of house flies. Pestic. Biochem. Physiol. 12: 224–230.Google Scholar
  102. Miller, T. A., V. L. Salgado, and S. N. Irving. 1983. The kdr factor in pyrethroid resistance, pp. 353–366. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.Google Scholar
  103. Miller, L. H., R. K. Sakai, P. Romans, R. W. Gwadz, P. Kantoff, and H. G. Coon. 1987. Stable integration and expression of a bacterial gene in the mosquito Anopheles gambiae. Science 237: 779–781.PubMedGoogle Scholar
  104. Moldenke, A. F., D. R. Vincent, D. E. Farnsworth, and L. C. Teeeiere. 1984. Cytochrome P-450 in insects. 4. Reconstitution of cytochrome P-450-dependent monooxygenase activity in the house fly. Pestic. Biochem. Physiol. 21: 358–367.Google Scholar
  105. Motoyama, N., N. Nomura, and W. C. Dauterman. 1980. Multiple factors for organophosphorus resistance in the house fly, Musca domestica L. J. Pestic. Sci. 5: 393–402.Google Scholar
  106. Motoyama, N., A. Hayashi, and W. C. Dauterman. 1983. The presence of two forms of glutathione S-transferases with distinct substrate specificity in OP-resistant and -susceptible house fly strains, pp. 197–202. In J. Miyamoto and P. C. Kearney (eds.), Pesticide chemistry: human welfare and environment, Vol. 3. Pergamon, Oxford.Google Scholar
  107. Mouches, C., D. Fournier, M. Raymond, M. Magnin, J.-B. Berge, N. Pasteur, and G. P. Georghiou. 1985. Association entre l’amplification de sequences d’ADN, l’augmentation quantitative d’ester-ases et la resistance a des insecticides organophosphores chez des moustiques du complexe Culex pipiens, avec une note sur une amplification similaire chez Musca domestica L. C. R. Acad. Sci. Ser. III Sci. Vie 301: 695–700.Google Scholar
  108. Mouches, C., M. Magnin, J.-B. Berge, M. de Silvestri, V. Beyssat, N. Pasteur, and G. P. Georghiou. 1987. Overproduction of detoxifying esterases in organophosphate-resistant Culex mosquitoes and their presence in other insects. Proc. Natl. Acad. Sci. USA 84: 2113–2116.PubMedGoogle Scholar
  109. Mouches, C., N. Pasteur, J.-B. Berge, O. Hyrien, M. Raymond, B. Robert de St. Vincent, M. de Silvestri, and G. P. Georghiou. 1986. Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science 233: 778–780.PubMedGoogle Scholar
  110. Narahashi, T. 1983. Resistance to insecticides due to reduced sensitivity of the nervous system, pp. 333–352. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.Google Scholar
  111. Nebert, D. W., and F. J. Gonzales. 1987. P-450 genes: structure, evolution, and regulation. Ann. Rev. Biochem. 56: 945–993.PubMedGoogle Scholar
  112. Nicholson, R. A., and T. A. Miller. 1985. Multifactorial resistance to transpermethrin in field-collected strains of the tobacco budworm Heliothis virescens F. Pestic. Sci. 16: 561–570.Google Scholar
  113. Nicholson, R. A., R. J. Hart, and P. O. Osborne. 1980a. Mechanisms involved in the development of resistance to pyrethroids with particular reference to knockdown resistance in house flies, pp. 465–471. In Insect neurobiology and pesticide action (Neurotox ’79). Society of Chemical Industry, London.Google Scholar
  114. Nicholson, R. A., A. E. Chalmers, R. J. Hart, and R. G. Wilson. 1980b. Pyremroid action and degradation in the cattle tick (Boophilus microplus), pp. 289–295. In Insect neurobiology and pesticide action (Neurotox ’79). Society of Chemical Industry, London.Google Scholar
  115. Noda, M., S. Shimizu, T. Tanabe, T. Takai, T. Kayano, T. Ideda, H. Takahashi, H. Nakayama, Y. Kanaoka, N. Minamino, K. Kangawa, H. Matsuo, M. A. Raftery, T. Hirose, S. Inayama, H. Hayashida, T. Miyata and S. Numa. 1984. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312: 121–127.PubMedGoogle Scholar
  116. Noda, M., T. Ikeda, T. Kayano, H. Suzuki, H. Takeshima, M. Kurasaki, H. Takahashi, and S. Numa. 1986a. Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320: 188–192.PubMedGoogle Scholar
  117. Noda, M., T. Ikeda, H. Suzuki, H. Takeshima, T. Takahashi, M. Kuno, and S. Numa. 1986b. Expression of functional sodium channels from cloned cDNA. Nature 322: 826–828.PubMedGoogle Scholar
  118. Nolan, J., W. J. Roulston, and W. H. Wharton. 1977. Resistance to synthetic pyrethroids in a DDT- resistant strain of Boophilus microplus. Pestic. Sci. 8: 484–486.Google Scholar
  119. Orner, S. M., G. P. Georghiou, and S. N. Irving. 1980. DDT/pyrethroid resistance interrelationships in Anopheles stephensi. Mosq. News 40: 200–209.Google Scholar
  120. Oppenoorth, F. J. 1982. Two different paraoxon-resistant acetylcholinesterase mutants in the house fly. Pestic. Biochem. Physiol. 18: 26–27.Google Scholar
  121. Oppenoorth, F. J. 1985. Biochemistry and genetics of insecticide resistance, pp. 731–773. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive insect physiology biochemistry and pharmacology, Vol. 12. Pergamon, Oxford.Google Scholar
  122. Osborne, M. P., and R. J. Hart. 1979. Neurophysiological studies of the effects of permethrin upon pyrethroid resistant (kdr) and susceptible strains of dipteran larvae. Pestic. Sci. 10: 407–413.Google Scholar
  123. Osborne, M. P., and A. Smallcombe. 1983. Site of action of pyrethroid insecticides in neuronal membranes as revealed by the kdr resistance factor, pp. 103–107. In J. Miyamoto and P. C. Kearney (eds.), Pesticide chemistry: human welfare and environment, Vol. 3. Pergamon, Oxford.Google Scholar
  124. Ottea, J. A., and F. W. Plapp, Jr. 1981. Induction of glutathione S-aryl transferase by phenobarbital in the house fly. Pestic. Biochem. Physiol. 15: 10–13.Google Scholar
  125. Ottea, J. A., and F. W. Plapp, Jr. 1984. Glutathione S-transferase in the house fly: biochemical and genetic changes associated with induction and insecticide resistance. Pestic. Biochem. Physiol. 22: 203–208.Google Scholar
  126. Ozoe, Y., M. Eto, K. Mochinda, and T. Nakamura. 1986. Characterization of high affinity binding of [3H]propyl bicyclic phosphate to house fly head extracts. Pestic. Biochem. Physiol. 26:263–264.Google Scholar
  127. Pasteur, N., and G. Sinegre. 1975. Esterase polymorphism and sensitivity to Dursban organophosphorus insecticide in Culex pipiens pipiens populations. Biochem. Genet. 13: 789–803.PubMedGoogle Scholar
  128. Pasteur, N., A. Iseki, and G. P. Georghiou. 1981a. Genetic and biochemical studies of the highly active esterases A’ and B associated with organophosphate resistance in mosquitoes of the Culex pipiens complex. Biochem. Genet. 19: 909–919.PubMedGoogle Scholar
  129. Pasteur, N., G. Sinegre, and A. Gabinaud. 1981b. Est-2 and Est-3 polymorphisms in Culex pipiens L. from southern France in relation to organophosphate resistance. Biochem. Genet. 19:499–508.PubMedGoogle Scholar
  130. Pauron, D., J. Barhanin, M. Amichot, M. Pralavorio, J.-B. Berge, and M. Lazdunski. 1989. Pyrethroid receptor in the insect Na+ channel: alteration of its properties in pyrethroid-resistant flies. Biochemistry 28: 1673–1677.Google Scholar
  131. Payne, G. T., and D. M. Soderlund. 1989. Allosteric enhancement by DDT of the binding of [3H]batrachotoxinin A-20-a-benzoate to sodium channels. Pestic. Biochem. Physiol. 33: 276–282.Google Scholar
  132. Payne, G. T., R. G. Blenk, and T. M. Brown. 1988. Inheritance of permethrin resistance in the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae). J. Econ. Entomol. 81: 65–73.Google Scholar
  133. Pedersen, L.-E. K. 1986. The potency of cyclopropane pyrethroid ethers against susceptible and resistant strains of the house fly Musca domestica. Experientia 42: 1057–1058.Google Scholar
  134. Picollo de Villar, M. I., L. J. T. van der Pas, H. R. Smissaert, and F. J. Oppenoorth. 1983. An unusual type of malathion-carboxylesterase in a Japanese strain of house fly. Pestic. Biochem. Physiol. 19: 60–65.Google Scholar
  135. Plapp, F. W., Jr. 1986. Genetics and biochemistry of insecticide resistance in arthropods: prospects for the future, pp. 74–86. In Pesticide resistance: strategies and tactics for management. National Academy Press, Washington, DC.Google Scholar
  136. Plapp, F. W., Jr., and R. F. Hoyer. 1968. Possible pleiotropism of a gene conferring resistance to DDT, DDT analogs, and Pyrethrins in the house fly and Culex tarsalis. J. Econ. Entomol. 61: 761–765.Google Scholar
  137. Priester, T. M., and G. P. Georghiou. 1978. Induction of high resistance to permethrin in Culex pipiens quinquefasciatus. J. Econ. Entomol. 71: 197–200.PubMedGoogle Scholar
  138. Priester, T. M., and G. P. Georghiou. 1980. Cross-resistance spectrum in pyrethroid-resistant Culex quinquefasciatus. Pestic. Sci. 11: 617–624.Google Scholar
  139. Raymond, M., D. Founder, J. Berge, A. Cuany, J.-M. Bride, and N. Pasteur. 1985a. Singlemosquito test to determine genotypes with an acetylcholinesterase insensitive to inhibition to propoxur insecticide. J. Am. Mosq. Control Assoc. 1: 425–427.PubMedGoogle Scholar
  140. Raymond, M., D. Pasteur, D. Fournier, A. Cuany, J. Berge, and M. Magnin. 1985b. Le gene d’une acetylcholinesterase insensible au propoxur determine la resistance de Culex pipiens L. a cet insecticide. C.R. Acad. Sci. Ser. HI Sci. Vie 300: 509–512.Google Scholar
  141. Riddles, P. W., P. A. Davey, and J. Nolan. 1983. Carboxylesterases from Boophilus microplus hydrolyze /raw-permethrin. Pestic. Biochem. Physiol. 20: 133–140.Google Scholar
  142. Riskallah, M. R. 1983. Esterases and resistance to synthetic pyrethroids in the Egyptian cotton leafworm. Pestic. Biochem. Physiol. 19: 184–189.Google Scholar
  143. Rossignol, D. P. 1988. Reduction in number of nerve membrane sodium channels in pyrethroid resistant house flies. Pestic. Biochem. Physiol. 32: 146–152.Google Scholar
  144. Saito, T., K. Tabata, and S. Kohno. 1983. Mechanisms of acaricide resistance with emphasis on dicofol, pp. 429–444. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.Google Scholar
  145. Salgado, V. L., S. N. Irving, and T. A. Miller. 1983a. Depolarization of motor nerve terminals by pyrethroids in susceptible and fc/r-resistant house flies. Pestic. Biochem. Physiol. 20: 100–114.Google Scholar
  146. Salgado, V. L., S. N. Irving, and T. A. Miller. 1983b. The importance of nerve terminal depolarization in pyrethroid poisoning in insects. Pestic. Biochem. Physiol. 20: 169.Google Scholar
  147. Salkoff, L., A. Butler, A. Wei, N. Scavarda, K. Giffen, C. Ifune, R. Goodman, and G. Mandel. 1987. Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila. Science 237: 744–749.PubMedGoogle Scholar
  148. Sattelle, D. B., C. A. Leech, S. C. R. Lummis, B. J. Harrison, H. P. C. Robinson, G. D. Moores, and A. L. Devonshire. 1988. Ion channel properties of insects susceptible and resistant to insecticides, pp. 563–582. In G. G. Lunt (ed.), Neurotox ’88: Molecular basis of drug and pesticide action. Elsevier, Amsterdam.Google Scholar
  149. Sawicki, R. M. 1978. Unusual response of DDT-resistant house flies to carbinol analogues of DDT. Nature 275: 443–444.PubMedGoogle Scholar
  150. Sawicki, R. M. 1985. Resistance to pyrethroid insecticides in arthropods, pp. 143–192. In D. H. Hutson and T. R. Roberts (eds.), Progress in pesticide biochemistry and toxicology, Vol. 5, Insecticides. Wiley, New York.Google Scholar
  151. Sawicki, R. M., A. L. Devonshire, A. W. Farnham, K. E. O’Dell, G. D. Moores, and I. Denholm. 1984. Factors affecting resistance to insecticides in house flies, Musca domestica L. (Diptera: Muscidae). U. Close linkage on autosome 2 between an esterase and resistance to trichlorphon and pyrethroids. Bull. Entomol. Res. 74: 197–206.Google Scholar
  152. Schnitzerling, H. J., J. Nolan, and S. Hughes. 1983. Toxicology and metabolism of some synthetic pyrethroids in larvae of susceptible and resistant strains of the cattle tick Boophilus microplus (Can.). Pestic. Sci. 14:64–72.Google Scholar
  153. Schofield, P. R., M. G. Darlsion, N. Fujita, D. R. Burt, F. A. Stephenson, H. Rodriguez, L. M. Rhee, J. Ramachandran, V. Reale, T. A. Glencorse, P. H. Seeburg, and E. A. Barnard. 1987. Sequence and functional expression of the GAB AA receptor shows a ligand-gated receptor super-family. Nature 328: 221.PubMedGoogle Scholar
  154. Scott, J. G., and G. P. Georghiou. 1986a. Mechanisms responsible for high levels of permethrin resistance in the house fly. Pestic. Sci. 17: 195–206.Google Scholar
  155. Scott, J. G., and G. P. Georghiou. 1986b. The biochemical genetics of permethrin resistance in the Learn-PyR strain of house fly. Biochem. Genet. 24: 25–37.PubMedGoogle Scholar
  156. Scott, J. G., and G. P. Georghiou. 1986c. Malathion-specific resistance in Anopheles stephensi from Pakistan. J. Am. Mosq. Control Assoc. 2: 29–32.PubMedGoogle Scholar
  157. Scott, J. G., and F. Matsumura. 1981. Characteristics of a DDT-induced case of cross-resistance to permethrin in Blattella germanica. Pestic. Biochem. Physiol. 16: 21–27.Google Scholar
  158. Scott, J. G., and F. Matsumura. 1983. Evidence for two types of toxic actions of pyrethroids on susceptible and DDT-resistant German cockroaches. Pestic. Biochem. Physiol. 19: 141–150.Google Scholar
  159. Scott, J. G., S. B. Ramaswamy, F. Matsumura, and K. Tanaka. 1986. Effectof method of application on resistance to pyrethroid insecticides in Blattella germanica (Orthoptera: Blattellidae). J. Econ. Entomol. 79: 571–575.PubMedGoogle Scholar
  160. Shono, T. 1985. Pyrethroid resistance: importance of the kdr-type mechanism. J. Pestic. Sci. 10: 141–146.Google Scholar
  161. Soderlund, D. M., and J. R. Bloomquist. 1989. Neurotoxic actions of pyrethroid insecticides. Ann. Rev. Entomol. 34: 77–96.Google Scholar
  162. Soderlund, D. M., J. R. Sanborn, and P. W. Lee. 1983. Metabolism of Pyrethrins and pyrethroids in insects, pp. 401–435. In D. H. Hutson and T. R. Roberts (eds.), Progress in pesticide biochemistry and toxicology, Vol. 3. Wiley, New York.Google Scholar
  163. Squires, R. F., J. E. Casida, M. Richardson, and E. Saederup. 1983. [35S>Butylbicyclophosphorothionate binds with high affinity to brain-specific sites coupled to γ-aminobutyric acid-A and ion recognition sites. Mol. Pharmacol. 23: 326–336.PubMedGoogle Scholar
  164. Sumikawa, K., I. Parker, and R. Miledi. 1984. Partial purification and functional expression of brain mRNAs coding for neurotransmitter receptors and voltage-operated channels. Proc. Natl. Acad. Sei. USA 81: 7994–7998.Google Scholar
  165. Sun, Y.-P., and E. R. Johnson. 1972. Quasi-synergism and penetration of insecticides. J. Econ. Entomol. 65: 349–353.PubMedGoogle Scholar
  166. Talcott, R. E. 1979. Hepatic and extrahepatic malathion carboxylesterases. Assay and localization in the rat. Toxicol. Appl. Pharmacol. 47: 145–150.PubMedGoogle Scholar
  167. Tanaka, K. 1987. Mode of action of insecticidal compounds acting at inhibitory synapse. J. Pestic. Sci. 12: 549–560.Google Scholar
  168. Tanaka, K., J. G. Scott, and F. Matsumura. 1984. Picrotoxinin receptor in the central nervous system of the American cockroach: its role in the action of cyclodiene-type insecticides. Pestic. Biochem. Physiol. 22: 117–127.Google Scholar
  169. Terriere, L. C. 1983. Enzyme induction, gene amplification, and insect resistance to insecticides, pp. 265–297. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.Google Scholar
  170. Tsukamoto, M., T. Narahashi, and T. Yamasaki. 1965. Genetic control of low nerve sensitivity to DDT in insecticide-resistant house flies. Botyu-Kagaku 30: 128–132.Google Scholar
  171. Vincent, D. R., A. F. Moldenke, and L. C. Terriere. 1983. NADPH-cytochrome P-450 reductase from the house fly, Musca domestica. Improved methods for purification, and reconstitution of aldrin epoxidase activity. Insect Biochem. 13:559–566.Google Scholar
  172. Vincent, D. R., A. F. Moldenke, D. E. Farnsworth, and L. C. Terriere. 1985. Cytochrome P-450 in insects. 6. Age dependency and phénobarbital induction of cytochrome P-450, P-450 reductase, and monooxygenase activities in susceptible and resistant strains of Musca domestica. Pestic. Biochem. Physiol. 23: 171–181.Google Scholar
  173. Wafford, K. A., D. B. Sattelle, I. Abalis, A. T. Eldefrawi, and M. E. Eldefrawi. 1987. γ-Aminobutyric acid-activated 36Cl-influx: a functional in vitro assay for CNS y-aminobutyric acid receptors of insects. J. Neurochem. 48: 177–180.PubMedGoogle Scholar
  174. Waters, L. C., and C. E. Nix. 1988. Regulation of insecticide resistance-related cytochrome P-450 expression in Drosophila melanogaster. Pestic. Biochem. Physiol. 30: 214–227.Google Scholar
  175. Waters, L. C., S. I. Simms, and C. E. Nix. 1984. Natural variation in the expression of cytochrome P-450 and dimethylnitrosamine demethylase in Drosophila. Biochem. Biophys. Res. Commun. 123: 907–913.PubMedGoogle Scholar
  176. Welling, W., and G. D. Paterson. 1985. Toxicodynamics of insecticides, pp. 603–645. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive insect physiology, biochemistry, and pharmacology, Vol. 12. Pergamon, Oxford.Google Scholar
  177. Wheelock, G. D., and J. G. Scott. 1989. Simultaneous purification of a cytochrome P-450 and cytochrome b5 from the house fly, Musca domestica L. Insect Biochem. 19: 481–488.Google Scholar
  178. Wilkinson, C. F. 1983. Role of mixed-function oxidases in insecticide resistance, pp. 175–205. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.Google Scholar
  179. Wu, C.-F., B. Ganetzky, L. Y. Jan, Y.-N. Jan, and S. Benzer. 1978. A Drosophila mutant with a temperature-sensitive block in nerve conduction. Proc. Natl. Acad. Sci. USA 75: 4047–4051.PubMedGoogle Scholar
  180. Yasutomi, K. 1983. Role of detoxication esterases in insecticide resistance, pp. 249–263. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.Google Scholar
  181. Yu, S. J., and L. C. Terriere. 1979. Cytochrome P-450 in insects. 1. Differences in the forms present in insecticide resistant and susceptible house flies. Pestic. Biochem. Physiol. 12: 239–248.Google Scholar
  182. Ziegler, R., S. Whyard, A. E. R. Downe, G. R. Wyatt, and V. K. Walker. 1987. General esterase, malathion carboxylesterase, and malathion resistance in Culex tar salis. Pestic. Biochem. Physiol. 28: 279–285.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • David M. Soderlund
  • Jeffrey R. Bloomquist

There are no affiliations available

Personalised recommendations