Investigating Mechanisms of Insecticide Resistance: Methods, Strategies, and Pitfalls

  • Jeffrey G. Scott


Pesticide resistance is a severe and important problem in situations where chemicals are used to kill pests. However, apart from the economic, social, and environmental costs associated with this problem, resistant insects are a physiological marvel. Some strains have become so resistant to a given insecticide that they can survive exposure to virtually any dose. Pesticide resistance is truly one of the most amazing cases of evolutionary adaptation to environmental change, especially when we consider that it has occurred relatively quickly in terms of evolutionary time.


Resistance Mechanism Insecticide Resistance Susceptible Strain Resistance Ratio Musca Domestica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, Y.-J., T. Shono, and J. Fukami. 1986. Inheritance of pyrethroid resistance in a housefly strain from Denmark. J. Pestic. Sci. 11: 591–596.CrossRefGoogle Scholar
  2. Beeman, R. W. 1983. Inheritance and linkage of malathion resistance in the red flour beetle. J. Econ. Entomol. 76: 737–740.Google Scholar
  3. Beeman, R. W., and B. A. Schmidt. 1982. Biochemical and genetic aspects of malathion-specific resistance in the Indianmeal moth (Lepidoptera: Pyralidae). J. Econ. Entomol. 75: 945–949.Google Scholar
  4. Bigley, WS., and F. W. Plapp, Jr. 1962. Metabolism of malathion and malaoxon by the mosquito Culex tarsalis. J. Insect Physiol. 8:545–557.CrossRefGoogle Scholar
  5. Brindley, W. A., and A. A. Selim. 1984. Synergism and antagonism in the analysis of insecticide resistance. Environ. Entomol. 13: 348–353.Google Scholar
  6. Casida, J. E. 1970. Mixed-function oxidase involvement in the biochemistry of insecticide synergists. Agric. Food Chem. 18: 753–772.CrossRefGoogle Scholar
  7. Cochran, D. G. 1989. Monitoring for insecticide resistance in field-collected strains of the German cockroach (Dictyoptera: Blattellidae). J. Econ. Entomol. 82: 336–341.PubMedGoogle Scholar
  8. Dennehy, T. J., J. Grannett, and T. F. Leigh. 1983. Relevance of slide dip and residual bioassay comparisons to detection of resistance in spider mites. J. Econ. Entomol. 76: 1225–1230.Google Scholar
  9. Devonshire, A. L. 1987. Biochemical studies of organophosphorus and carbamate resistance in houseflies and aphids, pp. 239–255. In M. G. Ford, D. W. Holloman, B. P. S. Khambay, and R. M. Sawicki (eds.), Combating Resistance to Xenobiotics. Ellis Horwood Ltd., London.Google Scholar
  10. Devonshire, A. L. and G. D. Moores. 1982. A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pestic. Biochem. Physiol. 18: 235–246.CrossRefGoogle Scholar
  11. Devonshire, A. L., and G. D. Moores. 1984. Different forms of insensitive acetylcholinesterase in insecticide-resistant house flies (Musca domestica). Pestic. Biochem. Physiol. 21: 336–340.CrossRefGoogle Scholar
  12. DeVries, D. H., and G. P. Georghiou. 1981. Decreased nerve sensitivity and decreased cuticular penetration as mechanisms of resistance to pyrethroids in a (1 R)-trans-permethrin-selected strain of the house fly. Pestic. Biochem. Physiol. 15: 234–241.CrossRefGoogle Scholar
  13. Dowd, P. F., and T. C. Sparks. 1984. Developmental changes in trans-pennethrin an α-Napthyl acetate ester hydrolysis during the last larval instar of Pseudoplusia includens. Pestic. Biochem. Physiol. 21: 275–282.CrossRefGoogle Scholar
  14. Dyte, C. E., and D. G. Rowlands. 1968. The metabolism and synergism of malathion in resistant and susceptible strains of Trifolium castaneum. J. Stored Prod. Res. 4: 157–173.CrossRefGoogle Scholar
  15. Ellman, G. L., K. D. Courtney, and R. M. Featherstone. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88–94.PubMedCrossRefGoogle Scholar
  16. Eto, M. 1974. Organophosphorus Pesticides: Organic and Biological Chemistry. CRC Press, Cleveland. 387 pp.Google Scholar
  17. Farnham, A. W. 1973. Genetics of resistance of pyrethroid-selected houseflies, Musca domestica L. Pestic. Sci. 4: 513–520.CrossRefGoogle Scholar
  18. Farnham, A. W., A. W. A. Murray, R. M. Sawicki, I. Denholm, and J. C. White. 1987. Characterization of the structure-activity relationship of kdr and two variants of super-Mr to pyrethroids in the house fly (Musca domestica L.). Pestic. Sci. 19: 209–220.CrossRefGoogle Scholar
  19. Feyereisen, R., J. F. Koener, D. E. Farns worth, and D. W. Nebert. 1989. Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of house fly, Musca domestica. Proc. Natl. Acad. Sci. USA 86: 1465–1469.PubMedCrossRefGoogle Scholar
  20. Ffrench-Constant, R. H., and A. L. Devonshire. 1988. Monitoring frequencies of insecticide resistance in Myzus persicae (Sulzer) (Hemiptera: Aphididae) in England during 1985–86 by immunoassay. Bull. Entomol. Res. 78: 163–171.CrossRefGoogle Scholar
  21. Ffrench-Constant, R. H., and B.C. Bonning. 1989. Rapid microtitre plate test distinguishes insecticide resistant acetylcholinesterase genotypes in the mosquitoes Anopheles albimanus, An. nigerrimus and Culex pipiens. Med. Vet. Entomol. 3: 9–16.PubMedCrossRefGoogle Scholar
  22. Fine, B. C., P. J. Godin, and E. M. Thain. 1963. Penetration of Pyrethrin I labelled with carbon-14 into susceptible and pyrethroid resistant houseflies. Nature 199: 927–928.CrossRefGoogle Scholar
  23. Finney, D. J. 1971. Probit Analysis, 3rd ed. Cambridge Univ., London. 333 pp.Google Scholar
  24. Forrester, N. W. 1988. Field selection for pyrethroid resistance genes, Australian Cottongr. 9: 48–51.Google Scholar
  25. Forgash, A. J., B. J. Cook, and R. C. Riley. 1962. Mechanisms of resistance in diazinon-selected multi-resistant Musca domestica. J. Econ. Entomol. 55: 544–551.Google Scholar
  26. Gammon, D. W., M. A. Brown, and J. E. Casida. 1981. Two classes of pyrethroid action in the cockroach. Pestic. Biochem. Physiol. 15:181–191.CrossRefGoogle Scholar
  27. Georghiou, G. P. 1965. Genetic studies on insecticide resistance, pp. 171–230. In R. L. Metcalf (ed.), Advances in Pest Control Research, Vol. VI. John Wiley and Sons, New York.Google Scholar
  28. Georghiou, G. P. 1983. Management of resistance in arthropods, pp. 769–792. In G. P. Georghiou and T. Saito (eds.), Pest Resistance to Pesticides. Plenum Press, New York.Google Scholar
  29. Georghiou, G. P., and N. Pasteur. 1978. Electrophoretic esterase patterns in insecticide-resistant and susceptible mosquitoes. J. Econ. Entomol. 71: 201–205.PubMedGoogle Scholar
  30. Georghiou, G. P., N. Pasteur, and M. K. Hawley. 1980. Linkage relationships between organophosphate resistance and a highly active esterase-B in Culex quinquefasciatus from California. J. Econ. Entomol. 73: 301–305.PubMedGoogle Scholar
  31. Ghiasuddin, S. M., and F. Matsumura. 1982. Inhibition of gamma-aminobutyric acid (GABA)-induced chloride uptake by gamma-BHC and heptachlor epoxide. Comp. Biochem. Physiol. 73C, 141–144.Google Scholar
  32. Hedin, P. A., W. L. Parrott, J. N. Jenkins, J. E. Mulrooney, and J. J. Mean. 1988. Eludicating mechanisms of tobacco budworm resistance to allelochemicals by dietary tests with insecticide synergists. Pestic. Biochem. Physiol. 32: 55–61.CrossRefGoogle Scholar
  33. Hemingway, J. 1982. The biochemical nature of malathion resistance in Anopheles stephensi from Pakistan. Pestic. Biochem. Physiol. 17:149–155.CrossRefGoogle Scholar
  34. Hodgson, E. 1985. Microsomal mono-oxygenases, pp. 225–321. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 11. Pergamon, Oxford.Google Scholar
  35. Huges, P. B., P. E. Green, and K. G. Reichmann. 1984. Specific resistance to malathion in laboratory and field populations of the Australian sheep blowfly, Lucilia cuprina (Diptera: Calliphoridae). J. Econ. Entomol. 77: 1400–1404.Google Scholar
  36. Kadous, A. A., S. M. Ghiasuddin, F. Matsumura, J. G. Scott, and K. Tanaka. 1983. Difference in the picrotoxinin receptor between the cylodiene-resistant and susceptible strains of the German cockroach. Pestic. Biochem. Physiol. 19: 157–166.CrossRefGoogle Scholar
  37. Konno, T., E. Hodgson, and W. C. Dauterman, 1989. Studies on methyl parathion resistance in Heliothis virescens. Pestic. Biochem. Physiol. 33: 189–199.CrossRefGoogle Scholar
  38. Lawrence, L. J., and J. E. Casida. 1984. Interactions of lindane, toxaphene and cyclodienes with brain-specific r-butylbicyclophosphorothionate receptor. Life Sci. 35: 171–178.PubMedCrossRefGoogle Scholar
  39. Lee, S. S. T., and J. G. Scott. 1989. An improved method for the preparation, stabilization and storage of house fly (Diptera: Muscidae) microsomes. J. Econ. Entomol. 82: 1559–1563.PubMedGoogle Scholar
  40. Lipke, H., and C. W. Kearns. 1960. DDT-dehydrochlorinase, pp. 253–287. In R. L. Metcalf (ed.), Advances in Pest Control Research, Vol. m. Interscience, New York.Google Scholar
  41. Lockwood, J. A., T. C. Sparks, and R. N. Story. 1984. Evolution of insect resistance to insecticides: a reevaluation of the roles of physiology and behavior. Bull. ESA 30(4): 41–51.Google Scholar
  42. Lund, A. E. 1985. Insecticides: effects on the nervous system, pp. 9–56. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 12. Pergamon, Oxford.Google Scholar
  43. Lund, A. E., and T. Narahashi. 1983. Kinetics of sodium channel modification as the basis for variation in the nerve membrane effects of pyrethroids and DDT analogs. Pestic. Biochem. Physiol. 20: 203–216.CrossRefGoogle Scholar
  44. Matsumura, F. 1985a. Involvement of picrotoxinin receptor in the action of cyclodiene insecticides. Neurotoxicol. 6: 139–164.Google Scholar
  45. Matsumura, F. 1985b. Toxicology of Insecticides, 2nd ed. Plenum Press, New York 598 pp.CrossRefGoogle Scholar
  46. Matsumura, F., and A. W. A. Brown. 1963a. Studies on organophosphorus tolerance in Aedes aegypti. Mosq. News 23: 26–31.Google Scholar
  47. Matsumura, F., and A. W. A. Brown. 1963b. Studies on the carboxylesterase in malathion-resistant Culex tar salis. J. Econ. Entomol. 56: 381–388.Google Scholar
  48. Matsumura, F., and C. J. Hogendijk. 1964. The enzymatic degradation of malathion in organophosphate resistant and susceptible strains of Musca domestica. Entomol. exp. Appl. 7: 179–193.CrossRefGoogle Scholar
  49. Milani, R. 1956. Mendellian inheritance of knock-down resistance to DDT and correlation between knockdown and mortality in Musca domestica L. Selected Sci. Papers Instit. Super. Sanita. I, Part 1: 176–182.Google Scholar
  50. Miller, T. A. 1979. Insect Neurophysiological Techniques. Springer-Verlag. 308 pp.CrossRefGoogle Scholar
  51. Oakley, B., and R. Schafer. 1978. Experimental Neurobiology. Univ. of Michigan Press, Ann Arbor, Michigan. 367 pp.Google Scholar
  52. Oppenoorth, F. J. 1985. Biochemistry and genetics of insecticide resistance, pp. 731–773. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 12. Pergamon, Oxford.Google Scholar
  53. Oppenoorth, F. J., and W. Welling. 1979. Biochemistry and physiology of resistance, pp. 507–551. In C. F. Wilkinson (ed.), Insecticide Biochemistry and Physiology. Plenum Press, New York.Google Scholar
  54. Pap, L., E. R. Hegedus, K. Bauer, I. Ujvary, and G. Matolesy. 1986. A rapid method for evaluation of nerve conduction blocking compounds. Comp. Biochem. Physiol. 85C: 347–352.Google Scholar
  55. Pimprikar, G. D., and G. P. Georghiou. 1979. Mechanisms of resistance to diflubenzuron in the house fly Musca domestica (L.). Pestic. Biochem. Physiol. 12: 10–22.CrossRefGoogle Scholar
  56. Plapp, F. W., Jr., and R. F. Hoyer. 1968. Insecticide resistance in the house fly: decreased rate of absorption as the mechanism of action of a gene that acts as an intensifier of resistance. J. Econ. Entomol. 61: 1298–1303.PubMedGoogle Scholar
  57. Raffa, K. F., and T. M. Priester. 1985. Synergists as research tools and control agents in agriculture. J. Agric. Entomol. 2: 27–45.Google Scholar
  58. Salgado, V. L., S. N. Irving, and T. A. Miller. 1983. Depolarization of motor nerve terminals by pyrethroids in susceptible and kdr-resistant house flies. Pestic. Biochem. Physiol. 20: 100–114.CrossRefGoogle Scholar
  59. Sawicki, R. M. 1962. Insecticidal activity of pyrethrum extract and its four insecticidal constituents against house flies, HI.—knock-down and recovery of flies treated with Pyrethrin extract with and without piperonyl butoxide. J. Sci. Food Agric. 13: 283–292.CrossRefGoogle Scholar
  60. Scott, J. G. 1988. Pyrethroid insecticides. ISI Atlas Sci. Pharmacol. 2: 125–128.Google Scholar
  61. Scott, J. G., and G. P. Georghiou. 1985. Rapid development of high-level permethrin resistance in a field-collected strain of the house fly (Diptera: Muscidae) under laboratory selection. J. Econ. Entomol. 78: 316–319.PubMedGoogle Scholar
  62. Scott, J. G., and G. P. Georghiou. 1986a. Mechanisms responsible for high levels of permethrin resistance in the house fly. Pestic. Sci. 17: 195–206.CrossRefGoogle Scholar
  63. Scott, J. G., and G. P. Georghiou. 1986b. Malathion-specific resistance in Anopheles stephensi from Pakistan. J. Am. Mosq. Cont. Assoc. 2: 29–32.Google Scholar
  64. Scott, J. G., and G. P. Georghhiou. 1986c. The biochemical genetics of permethrin resistance in the Learn-PyR strain of house fly. Biochem. Genet. 24: 25–37.PubMedCrossRefGoogle Scholar
  65. Scott, J. G., and F. Matsumura. 1981. Characteristics of a DDT-induced case of cross-resistance to permethrin in Blattella germanica. Pestic. Biochem. Physiol. 16: 21–27.CrossRefGoogle Scholar
  66. Scott, J. G., and F. Matsumura. 1983. Evidence for two types of toxic actions of pyrethroids on susceptible and DDT-resistant German cockroaches. Pestic. Biochem. Physiol. 19: 141–150.CrossRefGoogle Scholar
  67. Scott, J. G., C. J. Palmer, and J. E. Casida. 1987. Oxidative metabolism of the GABAA receptor antagonist t-butylbicycloorthof benzoate. Xenobiotica 17: 1085–1093.PubMedCrossRefGoogle Scholar
  68. Scott, J. G., R. B. Mellon, O. Kirino, and G. P. Georghiou. 1986a. Insecticidal activity of substituted benzyl dichlorovinylcyclopropanecarboxylates on susceptible and fair-resistant strains of the southern house mosquito, Culex quinquefasciatus. J. Pestic. Sci. 11: 475–477.CrossRefGoogle Scholar
  69. Scott, J. G., S. B. Ramaswamy, F. Matsumura, and K. Tanaka. 1986b. Effect of method of application on resistance to pyrethroid insecticides in Blattella germanica (Orthoptera: Blattellidae). J. Econ. Entomol. 79: 571–575.PubMedGoogle Scholar
  70. Shankland, D. L. 1979. Action of dieldrin and related compounds on synaptic transmission, pp. 139–153. In T. Narahashi (ed.), Neurotoxicology of Insecticides and Pheromones. Plenum, New York.CrossRefGoogle Scholar
  71. Sparks, T. C., J. A. Lockwood, R. L. Byford, J. B. Graves, and B. R. Leonard. 1989. The role of behavior in insecticide resistance. Pestic. Sci. (in press).Google Scholar
  72. Sun, Y.-P., and E. R. Johnson. 1960. Synergistic and antagonistic actions of insecticide-synergist combinations and their mode of action. J. Agric. Food Chem. 8: 261–266.CrossRefGoogle Scholar
  73. Sun, Y.-P., and Johnson, E. R. 1972. Quasi-synergism and penetration of insecticides. J. Econ. Entomol. 65: 349–353.PubMedGoogle Scholar
  74. Tanaka, K., J. G. Scott, and F. Matsumura. 1984. Picrotoxinin receptor in the central nervous system of the American cockroach: its role in the action of cyclodiene insecticides. Pestic. Biochem. Physiol. 22: 117–124.CrossRefGoogle Scholar
  75. Terriere, L. C. 1979. The use of in vitro techniques to study the comparative metabolism of xenobiotics, pp. 285–320. In G. D. Paulson, D. S. Frear, and E. P. Marks (eds.), Xenobiotic Metabolism: In Vitro Methods. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
  76. Welling, W., and G. D. Paterson. 1985. Toxicodynamics of insecticides, pp. 603–645. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 12. Pergamon, Oxford.Google Scholar
  77. Welsh, J. H., and H. T. Gordon. 1947. The mode of action of certain insecticides on the arthropod nerve axon. J. Cell. Comp. Physiol. 30: 147–171.CrossRefGoogle Scholar
  78. Wheelock, G. D., and J. G. Scott. 1989. Simultaneous purification of a cytochrome P-450 and cytochrome b5 from the house fly, Musca domestica L. Insect Biochem. 19: 481–488.CrossRefGoogle Scholar
  79. Wilkinson, C. F. 1979. The use of insect subcellular components for studying the metabolism of xenobiotics, pp. 249–284. In G. D. Paulson, D. S. Frear, and E. P. Marks (eds.), Xenobiotic Metabolism: In Vitro Methods. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
  80. Wilkinson, C. F. 1983. Role of mixed-function oxidases in insecticide resistance, pp. 175–205. In G. P. Georghiou and T. Saito (eds.), Pest Resistance to Pesticides. Plenum, New York.Google Scholar
  81. Yamamoto, I., Y. Takahashi, and N. Kyomura. 1983. Suppression of altered acetylcholinesterase of the green rice leafhopperpropyl and W-methyl carbamate combinations, pp. 579–594. In G. P. Georghiou and T. Saito (eds.), Pest Resistance to Pesticides. Plenum Press, New York.Google Scholar
  82. Yamasaki, T., and T. Narahashi. 1958. Resistance of house flies to insecticides and susceptibility of nerve to insecticides: studies on the mechanism of action of insecticides (XVII). Botyu Kagaku 23: 146–157.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • Jeffrey G. Scott

There are no affiliations available

Personalised recommendations