Advertisement

Resistance Detection and Documentation: The Relative Roles of Pesticidal and Biochemical Assays

  • Richard H. ffrench-Constant
  • Richard T. Roush

Abstract

The last decade has witnessed significant changes in both the philosophy and methods used for the monitoring of insecticide and acaricide resistance. The traditional emphasis has been on the development of precise but artificial techniques that measure change only in the physiological resistance of a strain under laboratory conditions (Busvine 1957). These techniques commonly use topical application of technical-grade insecticide in a suitable solvent and the calculation of median lethal dose estimates (e.g., LD50 or LC50) on a per-body-weight basis.

Keywords

Insecticide Resistance Spider Mite Resistance Ratio Resistance Management Resistant Individual 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous. 1970. Second conference on test methods for resistance in insects of agricultural importance. Bull. Entomol. Soc. Am. 16: 147–153.Google Scholar
  2. Arnold, J. T. A., and M. J. Whitten. 1975. Measurement of resistance in Lucilia cuprina larvae and absence of correlation between organophosphorus-resistance levels in larvae and adults. Entomol. Exp. and Appl. 18: 180–186.CrossRefGoogle Scholar
  3. Ball, H. J. 1981. Insecticide resistance: a practical assessment. Bull. Entomol. Soc. Am. 27: 261–262.Google Scholar
  4. Beach, R. F., W. G. Brogdon, L. Castanaza, C. Cordon-Rosales, and M. Calderon. 1989. Temperature effect of an enzyme assay for detecting fenitrothion resistance in Anopheles albimanus. Bull. WHO 67: 203–208.PubMedGoogle Scholar
  5. Blackman, R. L., and A. J. C. Paterson. 1986. Separation of Myzus (Nectarosiphon) antirrhinii (Macchiati) from Myzus (N.) persicae (Sulzer) and related species in Europe (Hemiptera: Aphididae). Syst. Ecol. 11: 267–276.Google Scholar
  6. Bloomquist, J. R., and T. A. Miller. 1985. A simple bioassay for detecting and characterizing insecticide resistance. Pestic. Sci. 16: 611–614.CrossRefGoogle Scholar
  7. Brent, K. J. 1986. Detection and monitoring of resistant forms: an overview, pp. 298–312. In National Academy of Sciences (ed.), Pesticide resistance: strategies and tactics for management. National Academy Press, Washington, D.C.Google Scholar
  8. Brindley, W. A., D. H. Al-Rajhi, and R. L. Rose. 1982. Portable incubator and its use in insecticide bioassays with field populations of lygus bugs, aphids, and other insects. J. Econ. Entomol. 75: 758–760.Google Scholar
  9. Brogdon, W. G., and C. M. Dickinson. 1983. A microassay system for measuring esterase activity and protein concentration in small samples and high pressure liquid chromatography eluate fractions. Anal. Biochem. 131: 499–503.PubMedCrossRefGoogle Scholar
  10. Brogdon, W. G., J. H. Hobbs, Y. St. Jean, J. R. Jacques, and L. B. Charles. 1988a. Microplate assay analysis of reduced fenitrothion susceptibility in Haitian Anopheles albimanus. J. Am. Mosq. Control Assoc. 4: 152–158.PubMedGoogle Scholar
  11. Brogdon, W. G., R. F. Beach, J. T. Stewart, and L. Castanaza. 1988b. Microplate assay analysis of organophosphate and carbamate resistance distribution in Guatemalan Anopheles albimanus. Bull. WHO 66: 339–346.PubMedGoogle Scholar
  12. Brown, T. M., and W. G. Brodgon. 1987. Improved detection of insecticide resistance through conventional and molecular techniques. Annu. Rev. Entomol. 32: 145–162.PubMedCrossRefGoogle Scholar
  13. Busvine, J. R. 1957. A critical review of techniques for testing insecticides. Commonwealth Agricultural Bureau, London.Google Scholar
  14. Comins, H. 1986. Tactics for resistance management using multiple pesticides. Agric. Ecosyst. Environ. 16: 129–148.CrossRefGoogle Scholar
  15. Daly, J. C, and P. Gregg. 1985. Genetic variation in Heliothis in Australia: species identification and gene flow in the two pest species H. Armigera (Hubner) and H. Punctigera (Wallengren) (Lepidoptera: Noctuidae). Bull. Entomol. Res. 75: 169–184.Google Scholar
  16. Daly, J. C, and D. H. Murray. 1988. Evolution of resistance to pyrethroids in Heliothis armigera (Hubner) (Lepidoptera: Noctuidae) in Australia. J. Econ. Entomol. 81: 984–988.Google Scholar
  17. Denholm, I., A. W. Farnham, M. W. Rowland, and R. M. Sawicki. 1990. Laboratory evaluation and empirical modelling of resistance-countering strategies, pp. 92–104. In W. K. Moberg and H. M. LeBaron (eds.), Managing resistance to agrochemicals. ACS Symposium Series No. 421. American Chemical Scoiety, Washington, D.C.CrossRefGoogle Scholar
  18. Denholm, I., R. M. Sawicki, and A. W. Farnham. 1984. The relationship between insecticide resistance and control failure, pp. 527–534. In Proceedings, 1984 British Crop Protection Conference, Pests and Diseases, Brighton. British Crop Protection Council, Croydon, England.Google Scholar
  19. Dennehy, T. J. 1987. Decision-making for managing pest resistance to pesticides, pp. 118–126. In M. G. Ford, D. W. Holloman, B. P. S. Khambay, and R. M. Sawicki (eds.), Combating resistance to xenobiotics: biological and chemical approaches. Ellis Horwood, Chichester, England.Google Scholar
  20. Dennehy, T. J., and J. Granett. 1984a. Spider mite resistance to dicofol in San Joaquin Valley cotton: inter- and intraspecific variability in susceptibility of three species of Tetranychus (Acari: Tetranychidae). J. Econ. Entomol. 77: 1381–1385.Google Scholar
  21. Dennehy, T. J., and J. Granett. 1984b. Monitoring dicofol-resistant spider mites (Acari: Tetranychidae) in California cotton. J. Econ. Entomol. 77: 1386–1392.Google Scholar
  22. Dennehy, T. J., J. Granett, and T. F. Leigh. 1983. Relevance of slide-dip and residual bioassay comparisons to detection of resistance in spider mites. J. Econ. Entomol. 76: 1225–1230.Google Scholar
  23. Dennehy, T. J., J. Granett, T. F. Leigh, and A. Colvin. 1987a. Laboratory and field investigations of spider mite (Acari: Tetranychidae) resistance to the selective acaricide propargite. J. Econ. Entomol. 80: 565–574.Google Scholar
  24. Dennehy, T. J., E. E. Grafton-Cardwell, J. Granett, and K. Barbour. 1987b. Practitioner-assessable bioassay for detection of dicofol resistance in spider mites (Acari: Tetranychidae). J. Econ. Entomol. 80: 998–1003.Google Scholar
  25. Dennehy, T. J., J. P. Nyrop, W. H. Reissig, and R. W. Weires. 1988. Characterization of resistance to dicofil in spider mites (Acari: Tetranychidae) from New York apple orchards. J. Econ. Entomol. 81: 1551–1561.Google Scholar
  26. Devonshire, A. L., and G. D. Moores. 1982. A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids Myzus persicae. Pestic. Biochem. Physiol. 18: 235–246.CrossRefGoogle Scholar
  27. Devonshire, A. L., and G. D. Moores. 1984a. Characterisation of insecticide-insensitive acetylcholinesterase: Microcomputer-based analysis of enzyme inhibition in homogenates of individual house fly (Musca domestica) heads. Pestic. Biochem. Physiol. 21: 341–348.CrossRefGoogle Scholar
  28. Devonshire, A. L., and G. D. Moores. 1984b. Different forms of insensitive acetylcholinesterase in insecticide-resistant house flies (Musca domestica). Pestic. Biochem. Physiol. 21: 336–340.CrossRefGoogle Scholar
  29. Devonshire, A. L., P. H. Needham, A. D. Rice, and R. M. Sawicki. 1975. Monitoring for resistance to organophosphorus insecticides in Myzus persicae on sugar beet, pp. 21–25. In Proceedings, 1975 British Insecticide and Fungicide Conference, Brighton. British Crop Protection Council, Croydon, England.Google Scholar
  30. Devonshire, A. L., G. D. Moores, and R. H. ffrench-Constant. 1986. Detection of insecticide resistance of immunological estimation of carboxylesterase activity in Myzus persicae (Sulzer) and cross reaction of the antiserum with Phorodon humuli (Schrank) (Hemiptera: Aphididae). Bull. Entomol. Res. 76: 97–107.CrossRefGoogle Scholar
  31. Edge, V. E., and D. G. James. 1986. Organo-tin resistance in Tetranychus urticae (Acari: Tetranychidae) in Australia. J. Econ. Entomol. 79: 1477–1483.Google Scholar
  32. Embury, S. H., S. J. Scharf, R. K. Saiki, M. A. Gholson, M. Golbus, N. Arnheim, and H. A. Erlich. 1987. Rapid prenatal diagnosis of sickle cell anemia by a new method of DNA analysis. New Engl. J. Med. 316: 656–661.PubMedCrossRefGoogle Scholar
  33. Farnham, A. W., K. O’Dell, I. Denholm, and R. M. Sawicki. 1984. Factors affecting resistance to insecticides in house-flies, Musca domestica L. (Diptera: Muscidae) 3. Relationship between the level of resistance to pyrethroids, control failure in the field and the frequency of gene kdr. Bull. Entomol. Res. 74: 581–589.CrossRefGoogle Scholar
  34. Feyereisen, R., J. F. Koener, D. E. Farnsworth, and D. W. Nebert. 1989. Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of the house fly, Musca domestica. Proc. Natl. Acad. Sci. USA 86: 1465–1469.PubMedCrossRefGoogle Scholar
  35. ffrench-Constant, R. J., and B. C. Bonning. 1989. Rapid microtitre plate test distinguishes insecticide resistant acetylcholinesterase genotypes in the mosquitoes Anopheles albimanus, An. nigerrimus and Culex pipiens. Med. Vet. Entomol. 3: 9–16.PubMedCrossRefGoogle Scholar
  36. ffrench-Constant, R. H., and A. L. Devonshire. 1986. The effect of aphid immigration on the rate of selection of insecticide resistance in Myzus persicae by different classes of insecticides, pp. 115–125. In Aspects of applied biology 13, Part I, Crop protection of sugar beet and crop protection and quality of potatoes, 1986. AAB, Wellesbourne, UK.Google Scholar
  37. ffrench-Constant, R. H., and A. L. Devonshire. 1987. A multiple homogenizer for rapid sample preparation in immunoassays and electrophoresis. Biochem. Gen. 25: 493–499.CrossRefGoogle Scholar
  38. ffrench-Constant, R. H., and A. L. Devonshire. 1988. Monitoring frequencies of insecticide resistance in Myzus persicae (Sulzer) (Hemiptera: Aphididae) in England during 1984–1986, by immunoassay. Bull. Entomol. Res. 78: 163–171.CrossRefGoogle Scholar
  39. ffrench-Constant, R. H., A. L. Devonshire, and S. J. Clarke. 1987. Differential rate of selection for resistance by carbamate, organophosphorus and combined pyrethroid and organophosphorus insecticide in Myzus persicae (Sulzer) Hemiptera: Aphididae). Bull. Entomol. Res. 77: 227–238.CrossRefGoogle Scholar
  40. ffrench-Constant, R. H., F. J. Byrne, M. F. Stribley, and A. L. Devonshire. 1988a. Rapid identification of the recently recognized Myzus antirrhinii (Machiati) (Hemiptera: Aphididae) by Polyacrylamide gel electrophoresis. The Entomologist 107: 20–23.Google Scholar
  41. ffrench-Constant, R. H., R. Harrington, and A. L. Devonshire. 1988b. Effect of repeated applications of insecticides to potatoes on numbes of Myzus persicae (Sulzer) Hemiptera: Aphididae) and on the frequencies of insecticide-resistant variants. Crop Protection 7: 55–61.CrossRefGoogle Scholar
  42. ffrench-Constant, R. H., S. J. Clark, and A. L. Devonshire. 1988c. Effect of decline of insecticide residues on selection for insecticide resistance in Myzus persicae (Sulzer) (Hemiptera: Aphididae). Bull. Entomol. Res. 78: 19–29.CrossRefGoogle Scholar
  43. ffrench-Constant, R. H., A. L. Devonshire, and R. P. White. 1988d. Spontaneous loss and reflection of resistance in extremely resistant Myzus persicae (Sulzer). Pestic. Biochem. Physiol. 30: 1–10.CrossRefGoogle Scholar
  44. Field, L. M., A. L. Devonshire, and B. G. Forde. 1988. Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem. J. 251: 309–312.PubMedGoogle Scholar
  45. Field, L. M., A. L. Devonshire, R. H. ffrench-Constant, and B. G. Forde. 1989a. Positive correlation between methylation and expression of amplified insecticide-resistance genes. FEBS Letters 243: 323–327.CrossRefGoogle Scholar
  46. Field, L. M., A. L. Devonshire, and R. H. ffrench-Constant. 1989b. The combined use of immunoassay and a DNA diagnostic technique to identify insecticide-resistant genotypes in the peach-potato aphid Myzus persicae (Sulz.). Pestic. Biochem. Physiol. 34: 174–178.CrossRefGoogle Scholar
  47. Flexner, J. L., P. H. Westigard, and B. A. Croft. 1988. Field reversion of organotin resistance in two spotted spider mite (Acari: Tetranychidae) following relaxation of selection pressure. J. Econ. Entomol. 81: 1516–1520.Google Scholar
  48. Forrester, N. W., and M. Cahill. 1987. Management of insecticide resistance in Heliothis armigera (Hubner) in Australia, pp. 127–137. In M. G. Ford, D. W. Holloman, B. P. S. Khambay and R. M. Sawicki (eds.), Combating resistance to xenobiotics; biological and chemical approaches. Ellis Horwood, Chichester, England.Google Scholar
  49. Georghiou, G. P. 1983. Management of resistance in arthropods, pp. 769–792. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.CrossRefGoogle Scholar
  50. Grafton-Caldwell, E. E., J. Granett, and T. F. Leigh. 1987. Spider mite species (Acari: Tetranychidae) response to propargite: basis for an acaricide resistance management program. J. Econ. Entomol. 80: 579–587.Google Scholar
  51. Grafton-Cardwell, E. E., J. A. Eash and J. Granett. 1988. Isozyme differentiation of Tetranychus pacificus from T. urticae and T. turkestani (Acari: Tetranychidae) in laboratory and field populations. J. Econ. Entomol. 81: 770–775.Google Scholar
  52. Grafton-Cardwell, E. E., J. Granett, T. F. Leigh, and S. M. Normington. 1989. Development and evaluation of a rapid bioassay for monitoring propargite resistance in Tetranychus species (Acari: Tetranychidae) on cotton. J. Econ. Entomol. 82: 706–715.Google Scholar
  53. Hall, L. M. C., and P. Spierer. 1986. The Ace locus of Drosophila melanogaster: structural gene for acetylcholinesterase with an unusual 5″ leader. EMBO J. 5: 2949–2954.PubMedGoogle Scholar
  54. Halliday, W. R., and G. P. Georghiou. 1985. Cross-resistance and dominance relationships in a permethrin-selected strain of Culex quinquefasciatus (Diptera: Culicidae). J. Econ. Entomol. 78: 1227–1232.PubMedGoogle Scholar
  55. Harrington, R., E. Bartlet, D. K. Riley, R. H. ffrench-Constant, and S. J. Clark. 1989. Resurgence of insecticide-resistant Myzus persicae on potatoes treated repeatedly with Cypermethrin and mineral oil. Crop Protection 8: 340–348.CrossRefGoogle Scholar
  56. Hassan, S. A. 1985. Standard methods to test the side-effects of pesticides on natural enemies of insects and mites developed by the IOBC/WPRS Working Group “Pesticides and Beneficial Organisms.” EPPO Bulletin 15: 214–255.CrossRefGoogle Scholar
  57. Haynes, K. F., T. A. Miller, R. T. Staten, W.-G. Li, and T. C. Baker. 1987. Pheromone trap for monitoring insecticide resistance in the pink bollworm moth (Lepidoptera: Gelechiidae): new tool for resistance management. Environ. Entomol. 16: 84–89.Google Scholar
  58. Hemingway, J., M. Rowland, and K. E. Kisson. 1984. Efficacy of pirimiphos methyl as a larvicide or adulticide against insecticide resistant and susceptible mosquitoes (Diptera: Culicidae). J. Econ. Entomol. 77: 868–871.PubMedGoogle Scholar
  59. Hemingway, J., C. Smith, K. G. I. Jayawardena, and P. R. J. Herath. 1986. Field and laboratory detection of the altered acetylcholinesterase resistance genes which confer organophosphate and carbamate resistance in mosquitoes (Diptera: Culicidae). Bull. Entomol. Res. 76: 559–565.CrossRefGoogle Scholar
  60. Hinkle, N. C., D. C. Sheppard, and M. P. Nolan. 1985. Comparing residue exposure and topical application techniques for assessing permethrin resistance in house flies (Diptera: Muscidae). J. Econ. Entomol. 78: 722–724.PubMedGoogle Scholar
  61. Houpt, D. R., J. C. Pursey, and R. A. Morton. 1988. Genes controlling malathion resistance in a laboratory-selected population of Drosophila melanogaster. Genome 30: 844–853.PubMedCrossRefGoogle Scholar
  62. Hoy, M. A., J. Conley, and W. Robinson. 1988. Cyhexatin and fenbutatin-oxide resistance in Pacific spider mite (Acari: Tetranychidae): stability and mode of inheritance. J. Econ. Entomol. 81:57–64.PubMedGoogle Scholar
  63. Hoyt, S. C., and F. H. Harries. 1961. Laboratory and field studies on orchard-mite resistance to Kelthane. J. Econ. Entomol. 54: 12–16.Google Scholar
  64. Hughes, P. R., N. A. M. van Beek, and H. A. Wood. 1986. A modified droplet feeding method for rapid assay of Bacillus thuringiensis and baculoviruses in noctuid larvae. J. Invert. Pathol. 48: 187–192.CrossRefGoogle Scholar
  65. Ignoffo, C. M., M. D. Huettel, A. H. Mcintosh, C. Garcia, and P. Wilkening. 1985. Genetics of resistance of Heliothis subflexa (Lepidoptera: Noctuidae) to Baculovirus heliothis. Ann. Entomol. Soc. Am. 78: 468–473.Google Scholar
  66. Keena, M. A., and J. Granett. 1985. Variability in toxicity of propargite to spider mites (Acari: Tetranychidae) from California almonds. J. Econ. Entomol. 78: 1212–1216.Google Scholar
  67. Knight, A. L., and L. A. Hull. 1989. Use of sex pheromone traps to monitor azinphosmethyl resistance in tufted apple bud moth (Lepidoptera: Tortricidae). J. Econ. Entomol. 82: 1019–1026.Google Scholar
  68. Lines, J. D., R. H. ffrench-Constant, and S. H. Kasim. 1990. Testing for genetic linkage of insecticide resistance genes by combining bioassay and biochemical methods. Medical and Veterinary Entomology (in press).Google Scholar
  69. Luttrell, R. G., R. T. Roush, A. Ali, J. S. Mink, M. R. Reid, and G. L. Snodgrass. 1987. Pyrethroid resistance in field populations of Heliothis virescens (Lepidoptera: Noctuidae) in Mississippi in 1986. J. Econ. Entomol. 80: 985–989.Google Scholar
  70. Mani, G. S. 1985. Evolution of resistance in the presence of two insecticides. Genetics 109: 761–783.PubMedGoogle Scholar
  71. Martinez-Carrillo, J. L., and H. T. Reynolds. 1983. Dosage-mortality studies with pyrethroids and other insecticides on the tobacco budworm (Lepidoptera: Noctuidae) from the Imperial Valley, California. J. Econ. Entomol. 76: 983–986.Google Scholar
  72. McGaughey, W. H. 1985. Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229: 193–195.PubMedCrossRefGoogle Scholar
  73. McKenzie, J. A., and M. J. Whitten. 1982. Selection for insecticide resistance in the Australian sheep blowfly, Lucilia cuprina. Experientia 38: 84–85.PubMedCrossRefGoogle Scholar
  74. Milio, J. F., P. G. Koehler, and R. S. Patterson. 1987. Evaluation of three methods for detecting chlorpyrifos resistance in German cockroach (Orthoptera: Blattellidae) populations. J. Econ. Entomol. 80: 44–46.Google Scholar
  75. Moores, G. D., A. L. Devonshire, and I. Denholm. 1988a. A microtitre plate assay for characterizing insensitive acetylcholinesterase genotypes of insecticide-resistant insects. Bull. Entomol. Res. 78: 537–544.CrossRefGoogle Scholar
  76. Moores, G. D., I. Denholm, F. J. Byrne, A. L. Kennedy, and A. L. Devonshire. 1988b. Characterising acetylcholinesterase genotypes in resistant insect populations, pp. 451–456. In Proceedings, 1988 British Crop Protection Conference, Brighton. British Crop Protection Council, Croydon, England.Google Scholar
  77. Mouches, C., M. Magnin, J-B. Berge, M. de Silvestri, V. Beyssat, N. Pasteur, and G. P. Georghiou. 1987. Overproduction of detoxifying esterase in organophosphate-resistant Culex mosquitoes and their presence in other insects. Proc. Natl. Acad. Sci. 84: 2113–2116.PubMedCrossRefGoogle Scholar
  78. Mullins, W., and E. P. Pieters. 1982. Weight versus toxicity: a need forrevision of the standard method of testing for resistance of the tobacco budworm to insecticides. J. Econ. Entomol. 75:40–42.Google Scholar
  79. Mullis, K. B., and F. A. Faloona. 1987. Specific synthesis of DNA in vitro via a polymerase catalysed chain reaction. Meth. Enzymol. 155: 335–350.PubMedCrossRefGoogle Scholar
  80. Ole-MoiYoi, O. K. 1987. Trypanosome species specific DNA probes to detect infection in tsetse flies. Parasitol. Today 3: 371–374.PubMedCrossRefGoogle Scholar
  81. Onstad, D. W. 1987. Calculation of economic-injury levels and economic thresholds for pest management. J. Econ. Entomol. 80: 297–303.Google Scholar
  82. Oppenoorth, F. J. 1985. Biochemistry and genetics of insecticide resistance, pp. 731–773. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive insect physiology, biochemistry, and pharmacology, Vol. 12. Pergamon, Oxford.Google Scholar
  83. Pasteur, N., and G. P. Georghiou. 1981. Filter paper test for rapid determination of phenotypes with high esterase activity in organophosphate resistant mosquitoes. Mosq. News 41: 181–183.Google Scholar
  84. Pasteur, N., and G. P. Georghiou. 1989. Improved filter paper test for detecting and quantifying increased esterase activity in organophosphate-resistant mosquitoes (Diptera: Culicidae). J. Econ. Entomol. 82: 347–353.PubMedGoogle Scholar
  85. Post, R. J., and J. M. Crampton. 1988. The taxonomic use of variation in repetitive DNA sequences in the Simulium damnosum complex, pp. 245–256. In M. W. Service (ed.), biosystematics of haematophagous insects. The Systematics Association Special, Vol. 37. Clarendon Press, Oxford.Google Scholar
  86. Riedl, H., A. Seeman, and F. Hernie. 1985. Montoring susceptibility to azinphosmethyl in field populations of the codling moth (Lepidoptera: Tortricidae) with pheromone traps. J. Econ. Entomol. 78: 692–699.Google Scholar
  87. Riley, S. L. 1989. Pyrethroid resistance in Heliothis virescens: Current U.S. management programs. Pestic. Sci. 26:411–421.CrossRefGoogle Scholar
  88. Robertson, J. L., K. C. Smith, N. E. Savin, and R. J. Lavigne. 1984. Effects of dose selection and sample size on precision of lethal dose estimates in dose-mortality regression. J. Econ. Entomol. 77: 833–837.Google Scholar
  89. Roush, R. T. 1989. Designing pesticide management programs: how can you choose? Pestic. Sci. 26: 423–441.CrossRefGoogle Scholar
  90. Roush, R. T., and M. A. Hoy. 1978. Relative toxicity of permethrin to a predator, Metaseiulus occidentalis and its prey, Tetranychus urticae. Environ. Entomol. 7: 287–288.Google Scholar
  91. Roush, R. T., and R. G. Luttrell. 1987. The phenotypic expression of pyrethroid resistance in Heliothis and implications for resistance management, pp. 220–224. In Proceedings, 1987 Beltwide Cotton Production Research Conference. National Cotton Council of America, Memphis.Google Scholar
  92. Roush, R. T., and R. G. Luttrell. 1989. Expression of resistance to pyrethroid insecticides in adults and larvae of tobacco budworm (Lepidoptera: Noctuidae): implications for resistance monitoring. J. Econ. Entomol. 82: 1305–1310.Google Scholar
  93. Roush, R. T., and G. L. Miller. 1986. Considerations for design of insecticide resistance monitoring programs. J. Econ. Entomol. 79: 293–298.Google Scholar
  94. Roush, R. T., and J. A. McKenzie. 1987. Ecological genetics of insecticide and acaricide resistance. Annu. Rev. Entomol. 32: 361–380.PubMedCrossRefGoogle Scholar
  95. Roush, R. T., R. L. Combs, T. C. Randolph, J. MacDonald, and J. A. Hawkins. 1986. Inheritance and effective dominance of pyrethrooid resistance in the horn fly (Diptera: Muscidae). J. Econ. Entomol. 79: 1178–1182.PubMedGoogle Scholar
  96. Rowland, M., and J. Hemingway. 1987. Changes in malathion resistance with age in Anopheles stephensi from Pakistan. Pestic. Biochem. Physiol. 27: 239–247.CrossRefGoogle Scholar
  97. Saiki, R. K., T. L. Bugawan, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1986. Analysis of enzymatically amplified B-globin and HLA-DQo DNA with allele-specific oligonucleotide probes. Nature 324: 163–166.PubMedCrossRefGoogle Scholar
  98. Sanderson, J. P., M. P. Parrella, and J. T. Trumble. 1989. Monitoring insecticide resistance in Liriomyza trifolii (Diptera: Agromyzidae) with yellow sticky cards. J. Econ. Entomol. 82: 1011–1018.Google Scholar
  99. Sawicki, R. M. 1978. Unusual response of DDT-resistant houseflies to carbinol analogues of DDT. Nature 275: 443–444.PubMedCrossRefGoogle Scholar
  100. Sawicki, R. M. 1987. Definition, detection and documentation of insecticide resistance, pp. 105–117. In M. G. Ford, D. W. Holloman, B. P. S. Khambay, and R. M. Sawicki (eds.), Combating resistance to xenobiotics; biological and chemical approaches. Ellis Horwood, Chichester, England.Google Scholar
  101. Sawicki, R. M., and A. D. Rice. 1978. Response of susceptible and resistant peach-potato aphid Myzus persicae (Sulzer) to insecticides in leaf-dip bioassays. Pestic. Sci. 9: 513–516.CrossRefGoogle Scholar
  102. Sawicki, R. M., A. L. Devonshire, R. W. Payne, and S. M. Petzing. 1980. Stability of insecticide resistance in the peach-potato aphid Myzus persicae (Sulzer). Pestic. Sci. 11: 33–42.CrossRefGoogle Scholar
  103. Schouest, L. P., Jr., and T. A. Miller. 1988. Factors influencing pyrethroid toxicity in pink bollworm (Lepidoptera: Gelechiidae): implications for resistance management. J. Econ. Entomol. 81: 431–436.Google Scholar
  104. Schouest, L. P., Jr., N. Umetsu, and T. A. Miller. 1983. Solvent modified desposition of insecticide on house fly (Diptera: Muscidae) cuticle. J. Econ. Entomol. 76: 973–982.PubMedGoogle Scholar
  105. Scott, J. G., S. B. Ramaswamy, F. Matsumara, and K. Tanaka. 1986. Effect of method of application on resistance to pyrethroid insecticides in Blattella germanica (Orthoptera: Blattellidae). J. Econ. Entomol. 79: 571–575.PubMedGoogle Scholar
  106. Scott, J. G., R. T. Roush, and D. A. Rutz. 1989. Insecticide resistance of house flies from New York dairies (Diptera: Muscidae). J. Agric. Entomol. 6: 53–64.Google Scholar
  107. Soderlund, D. M., J. R. Bloomquist, F. Wong, L. L. Payne, and D. C. Knipple. 1989. Molecular neurobiology: insights for insecticide action and resistance. Pestic. Sci. 26: 359–374.CrossRefGoogle Scholar
  108. Sparks, T. C., J. A. Lockwood, R. L. Byford, J. B. Graves, and B. R. Leonard. 1989. The role of behaviour in insecticide resistance. Pestic. Sci. 26: 383–399.CrossRefGoogle Scholar
  109. Staetz, C. A. 1985. Susceptibility of Heliothis virescens (F.) (Lepidoptera: Noctuidae) to permethrin from across the cotton belt; a five year study. J. Econ. Entomol. 78: 505–510.Google Scholar
  110. Tabashnik, B. E., and N. L. Cushing. 1987. Leaf residue vs. topical bioassays for assessing insecticide resistance in the diamond-back moth, Plutella xylostella L. FAO Plant Prot. Bull. 35: 11–14.Google Scholar
  111. Tabashnik, B. E., N. L. Cushing, and M. W. Johnson. 1987. Diamondback moth (Lepidoptera: Plutellidae) resistance to insecticides in Hawaii: intra-island variation and cross-resistance. J. Econ. Entomol. 80: 1091–1099.Google Scholar
  112. Tatchell, G. M., M. Thorn, H. D. Loxdale, and A. L. Devonshire. 1988. Monitoring for insecticide resistance in migrant populations of Myzus persicae, pp. 559–564. In Proceedings, 1988 British Crop Protection Conference Brighton. British Crop Protection Council, Croydon, England.Google Scholar
  113. Walker, W. F., A. L. Boswell, and F. F. Smith. 1973. Resistance of spider mites to acaricides: comparison of slide dip and leaf dip methods. J. Econ. Entomol. 66: 549–550.Google Scholar
  114. Waters, L. C., and C. E. Nix. 1988. Regulation of insecticide resistance-related cytochrome P-450 expression in Drosophila melanogaster. Pestic. Biochem. Physiol. 30: 214–227.CrossRefGoogle Scholar
  115. Watkinson, I. A., J. Wiseman, and J. Robinson. 1984. A simple test kit for field evaluation of the susceptibility of insect pests to insecticides, pp. 559–564. In Proceedings, 1984 British Crop Protection Conference. Brighton. British Crop Protection Council, Croydon, England.Google Scholar
  116. Welty, C., W. H. Reissig, T. J. Dennehy, and R. W. Weires. 1987. Cyhexatin resistance in New York populations of European red mite (Acari: Tetranychidae). J. Econ. Entomol. 80: 230–236.Google Scholar
  117. Welty, C., W. H. Reissig, T. J. Dennehy, and R. W. Weires. 1988. Comparison of residual bioassay methods and criteria for assessing mortality of cyhexatin-resistant European red mite (Acari: Tetranychidae). J. Econ. Entomol. 81: 442–448.Google Scholar
  118. Welty, C., W. H. Reissig, T. J. Dennehy, and R. W. Weires. 1989. Relationship between field efficacy and laboratory estimates of susceptibility to cyhexatin in populations of European red mite (Acari: Tetranychidae). J. Econ. Entomol. 82: 354–364.Google Scholar
  119. W.H.O. 1970. Insecticide resistance and vector control. Seventeenth report of the WHO expert committee on insecticides. WHO Technical Report Series, No. 433.Google Scholar
  120. W.H.O. 1976. Resistance of vectors and reservoirs of disease to pesticides. Twenty-second report of the WHO expert committee on insecticides. WHO Technical Report Series, No. 585.Google Scholar
  121. W.H.O. 1980. Resistance of vectors of disease to pesticides. Fifth report of the WHO expert committee on vector biology and control. WHO Technical Report Series, No. 655.Google Scholar
  122. Wilson, T. G. 1988. Drosophila melanogaster (Diptera: Drosophilidae): A model insect for insecticide resistance studies. J. Econ. Entomol. 81: 22–27.PubMedGoogle Scholar
  123. Winks, R. G. 1986a. The significance of response time in detection and measurement of fumigant resistance in insects with special reference to phosphine. Pestic. Sci. 17: 165–174.CrossRefGoogle Scholar
  124. Winks, R. G. 1986b. The biological efficacy of fumigants: time/dose response phenomena, pp. 211–221. In Pesticides and humid tropical grain storage systems, ACIAR Proceedings No. 14. ACIAR, Canberra, Australia.Google Scholar
  125. Winks, R. G., and C. J. Waterford. 1986. The relationship between concentration and time in the toxicity of phosphine to adults of a resistant strain of Tribolium castaneum (Herbst). J. Stored Prod. Res. 22: 85–92.CrossRefGoogle Scholar
  126. Wolfenbarger, D. A., J. R. Raulston, A. C. Bartlett, G. E. Donaldson, and P. P. Lopez. 1982. Tobacco budworm: selection for resistance to methyl parathion from a field-collected strain. J. Econ. Entomol. 75: 211–215.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • Richard H. ffrench-Constant
  • Richard T. Roush

There are no affiliations available

Personalised recommendations