Advertisement

Pelagic Mesocosms: II. Process Studies

  • U. Brockmann
Part of the Coastal and Estuarine Studies book series (COASTAL, volume 37)

Abstract

Examples of ecological research using pelagic mesocosms are reviewed in order to show the applicability of experimental ecosystems in studying specific ecological processes. There are still shortcomings in the application of this specific tool in biological oceanography. Many process studies have been performed in mesocosms such as transfer and transformation of chemical compounds, and rate measurements of biological and chemical processes such as: (1) primary production; (2) release of organic compounds by phytoplankton; (3) decomposition measured as respiration or release of ammonium and urea; (4) grazing at different food size spectra; and (5) sedimentation rates, which could be related to the total development of the enclosed ecosystem. Within deep enclosures, vertical processes were studied, such as migration and the boundary effects of densiclines. By frequent sampling, diurnal and subdiurnal behavior were investigated. The succession of phytoplankton species and zooplankton cohorts, including the interaction between trophic levels, were studied in experiments lasting from several weeks to months. Fluxes of material can be followed by frequent measurements of the different compartments as well as by the use of isotope-spiked preconditioned organisms or nutrients. A more effective interdisciplinary utilization of mesocosm research is recommended. Evaluation of representativity can be achieved by combination with parallel field measurements. The supplementation with simplified systems (monocultures) and laboratory experiments can contribute significantly to ecosystem analysis.

Keywords

Free Amino Acid Phytoplankton Species Mesocosm Experiment Toxic Dinoflagellate Dissolve Free Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Antia, N. J., C. D. McAllister, T. R. Parsons, K. Stephens, and J. D. H. Strickland. 1963. Further measurements of primary production using a large volume plastic sphere. Limnos. Oceanogr 8: 166–183.CrossRefGoogle Scholar
  2. Banse, K. 1982. Experimental marine ecosystem enclosures in a historical perspective. Pp. 11–24. In: G. D. Grice and M. R. Reeve [eds.], Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems. New York: Springer-Verlag.Google Scholar
  3. Beers, J. R., M. R. Reeve, and G. D. Grice. 1977. Controlled ecosystem pollution experiment: Effect of mercury on enclosed water columns. IV. Zooplankton population dynamics and production. Mar. Sci. Comm 3: 355–394.Google Scholar
  4. Bienfang, P. K. 1982. Phytoplankton sinking-rate dynamics in enclosed experimental ecosystems. Pp. 261–274. In: G. D. Grice and M. R. Reeve [eds.], Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems. New York: Springer-Verlag.Google Scholar
  5. von Bröckel, K.. 1982. Sedimentation of phytoplankton cells within controlled experimental ecosystems following launching, and implications for further enclosure studies. Pp. 251–259. In: G. D. Grice and M. R. Reeve [eds.], Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems. New York: Springer-Verlag.Google Scholar
  6. Brockmann, U. 1990. Enclosed plankton ecosystems in harbours, fjords and the North Sea - Release of dissolved organic substances. Mar. Sci. Bull (In press).Google Scholar
  7. Brockmann, U. H., K. Eberlein, G. Hentzschel, H. K. Schöne, D. Siebers, K. Wandschneider, and A. Weber. 1977a. Parallel plastic tank experiments with cultures of marine diatoms. Helgol. Wiss. Meeresunters 30: 201216.Google Scholar
  8. Brockmann, U. H., K. Eberlein, P. Hosumbek, H. Trageser, E. Maier-Reimer, H. K. Schöne, and H. J. Junge. 1977b. The development of a natural plankton population in an outdoor tank with nutrient poor seawater. I. Phytoplankton succession. Mar. Biol 43: 1–17.CrossRefGoogle Scholar
  9. Brockmann, U. H. and G. Hentzschel. 1983. Samplers for enclosed stratified water columns. Mar. Ecol. Prog. Ser 14: 107–109.CrossRefGoogle Scholar
  10. Brockmann, U. H., E. Dahl, and K. Eberlein. 1985. Nutrient dynamics during a Gyrodinium aureolum bloom. Pp. 239–244. In: Anderson, D. M., A. W. White and D. G. Baden [eds.], Toxic Dinoflagellates. New York: Elsevier.Google Scholar
  11. Cadée, G. C. 1986. Organic carbon in the water column and its sedimentation, Fladen Ground (North Sea), May 1983. Neth. J. Sea Res 20: 347–358.CrossRefGoogle Scholar
  12. Dahl, E. and U. Brockmann. 1985. The growth of Gyrodinium aureolum Hulburt in in situ experimental bags. Pp. 233–238. In: D. M. Anderson, A. W. White, and D. G. Baden [eds.), Toxic Dinoflagellates. New York: Elsevier.Google Scholar
  13. Dahl, E. and U. H. Brockmann. 1989. Does Gyrodinium aureolum Hulburt perform diurnal vertical migrations? Pp. 225–228. In: T. Okaichi, D. M. Anderson, and T. Nemoto [eds.l, Red Tides. New York: Elsevier.Google Scholar
  14. Davies, J. M. and P. J. leB. Williams. 1984. Verification of 14C and 02 derived primary organic production measurements using an enclosed ecosystem. J. Plankton Res 6: 457–474.CrossRefGoogle Scholar
  15. Davis, C. 0 1982. The importance of understanding phytoplankton life strategies in the design of enclosure experiments. Pp. 323–332. In: G. D. Grice and M. R. Reeve [eds.], Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems New York: Springer-Verlag.Google Scholar
  16. Doering, P. H., C. A. Oviatt, and J. R. Kelly. 1986. The effects of the filter-feeding clam Mercenaria mercenaria on carbon cycling in experimental marine mesocosms. J. Mar. Res 44: 839–861.CrossRefGoogle Scholar
  17. Eberlein, K. and U. H. Brockmann. 1986. Development of particulate and dissolved carbohydrates in parallel enclosure experiments with monocultures of Tha/assiosira rotula. Mar. Ecol. Prog. Ser. 32: 133138.Google Scholar
  18. Gamble, J. C. 1978. Copepod grazing during a declining spring phytoplankton bloom in the northern North Sea. Mar. Biol 49: 303315.Google Scholar
  19. Gamble, J. C. and J. M. Davies. 1982. Application of enclosures to the study of marine pelagic systems. Pp. 25–48. In: G. D. Grice and M. R. Reeve [eds.], Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems. New York: Springer-Verlag.Google Scholar
  20. George, D. G. 1983. Interrelations between the vertical distribution of Daphnia and chlorophyll a in two large limnetic enclosures. J. Plankton Res 5: 457–475.CrossRefGoogle Scholar
  21. Goldman, J. C. and R. Mann. 1980. Temperature-influenced variations in speciation and chemical composition of marine phytoplankton in outdoor mass cultures. J. Exp. Mar. Biol. Ecol 46: 29–39.CrossRefGoogle Scholar
  22. Gust, G. 1977. Turbulence and waves inside flexible wall systems designed for biological studies. Mar. Biol 42: 47–53.CrossRefGoogle Scholar
  23. Hammer, K. D., U. H. Brockmann, and G. Kattner. 1981. Release of dissolved free amino acids during a bloom of Thalassiosira rotula. Kieler Meeresforsch. Sonderh. 5: 101–109.Google Scholar
  24. Hammer, K. D. and U. H. Brockmann. 1983. Rhythmic release of dissolved free amino acids from partly synchronized Thalassiosira rotula under nearly natural conditions. Mar. Biol 74: 305–312.CrossRefGoogle Scholar
  25. Hammer, K. D. and G. Kattner. 1986. Dissolved free amino acids in the marine environment: a carbon to nitrogen ratio shift during diatom blooms. Mar. Ecol. Prog. Ser 31: 35–45.CrossRefGoogle Scholar
  26. Harris, R. P., M. R. Reeve, G. D. Grice, G. T. Evans, V. R. Gibson, J. R. Beers, and B. K. Sullivan. 1982. Trophic interactions and production processes in natural zooplankton communities in enclosed water columns. Pp. 353–387. In: G. D. Grice and M. R. Reeve [eds.], Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems. New York: Springer-Verlag.Google Scholar
  27. Harrison, P. J. and D. H. Turpin. 1982. The manipulation of physical, chemical and biological factors to select species from natural phytoplankton communities. Pp. 275–289. In: G. D. Grice and M. R. Reeve [eds.], Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems. New York: Springer-Verlag.Google Scholar
  28. Harrison, W. G. and J. M. Davies. 1977. Nitrogen cycling in a marine planktonic food chain: Nitrogen fluxes through the principal components and the effects of adding copper. Mar. Biol 43: 299–306.CrossRefGoogle Scholar
  29. Henry, R. L. 1985. The impact of zooplankton size structure on phosphorus cycling in field enclosures. Hydrobiologia 120: 3–9.CrossRefGoogle Scholar
  30. Hessen, D. O. and J. P. Nilssen. 1986. From phytoplankton to detritus and bacteria: effects of short-term nutrient and fish perturbations in a eutrophic lake. Arch. Hydrobiol 105: 273–284.Google Scholar
  31. Hollibaugh, J. T., A. B. Carruthers, J. A. Fuhrman, and F. Azam. 1980. Cycling of organic nitrogen in marine plankton communities studied in enclosed water columns. Mar. Biol 59: 15–21.CrossRefGoogle Scholar
  32. Jahnke, J., U. H. Brockmann, L. Aletsee, and K. D. Hammer. 1983.Google Scholar
  33. Phytoplankton activity in enclosed and free marine ecosystems in a southern Norwegian fjord during spring 1979. Mar. Ecol. Prog. Ser 14: 19–28.Google Scholar
  34. Kohata, K. and M. Watanabe 1986. Synchronous division and the pattern of diel vertical migration of Heterosigma akashiwo Hada (Raphidophyceae) in a laboratory culture tank. J. Exp. Mar. Biol. Ecol 100: 209–224.CrossRefGoogle Scholar
  35. Koike, I., A. Hattori, M. Takahashi, and J. J. Goering. 1982. The use of enclosed experimental ecosystems to study nitrogen dynamics in coastal waters. Pp. 291–303. In: G. D. Grice and M. R. Reeve [eds.], Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems. New York: Springer-Verlag.Google Scholar
  36. Kuiper, J. 1977. Development of North Sea coastal plankton communities in separate plastic bags under identical conditions. Mar. Biol 44: 97–107.CrossRefGoogle Scholar
  37. Kuiper, J. 1981. Fate and effects of mercury in marine plankton communities in experimental enclosures. Ecotoxicol. Environ. Saf 5: 106–134.PubMedCrossRefGoogle Scholar
  38. Kuiper, J. and J. Gamble. 1988. Between test-tubes and North Sea mesocosms. Pp. 638–654. In: Salomons, W., B. Bayne, E. Duursma, and U. Förstner [eds.], Pollution of the North Sea: An Assessment. Berlin: Springer-Verlag.Google Scholar
  39. McAllister, C. D., T. R. Parsons, K. Stephens, and J. D. H. Strickland. 1961. Measurements of primary production in coastal sea water using a large-volume plastic sphere. Limnol. Oceanogr 6: 237–258.CrossRefGoogle Scholar
  40. Oviatt, C. A., A. A. Keller, P. A. Sampou, and L. L. Beatty. 1986a. Patterns of productivity during eutrophication: a mesocosm experiment. Mar. Ecol. Prog. Ser 28: 69–80.CrossRefGoogle Scholar
  41. Oviatt, C. A., D. T. Rudnick, A. A. Keller, P. A. Sampou, and G. T. Almquist. 1986b. A comparison of system (02 and CO2) and C-14 measurements of metabolism in estuarine mesocosms. Mar. Ecol. Prog. Ser 28: 5767.Google Scholar
  42. Parsons, T. R., P. J. Harrison, and R. Waters. 1978. An experimental simulation of changes in diatom and flagellate blooms. J. Exp. Mar. Biol. Ecol 32: 285–294.CrossRefGoogle Scholar
  43. Reeve, M. R., G. D. Grice, and R. P. Harris. 1982. The CEPEX approach and its implications for future studies in plankton ecology. Pp. 389–398. In: G. D. Grice and M. R. Reeve [eds.], Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems. New York: Springer-Verlag.Google Scholar
  44. Salki, A., M. Turner, K. Patalas, J. Rudd, and D. Findlay. 1985. The influence of fish-zooplankton-phytoplankton interactions on the results of selenium toxicity experiments within large enclosures. Can. J. Fish. Aquat Sci 42: 1132–1143.CrossRefGoogle Scholar
  45. Schindler, D. W. 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.PubMedCrossRefGoogle Scholar
  46. Smith, W., V. R. Gibson, and J. F. Grassle. 1982. Replication in controlled marine systems: Presenting the evidence. Pp. 217–225. In: G. D. Grice and M. R. Reeve [eds.], Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems. New York: Springer-Verlag.Google Scholar
  47. Steele, J. H., D. M. Farmer, and E. W. Henderson. 1977. Circulation and temperature structure in large marine enclosures. J. Fish. Res. Bd. Canada 34: 1095–1104.CrossRefGoogle Scholar
  48. Steele, J. H. and J. C. Gamble. 1982. Predator control in enclosures. Pp. 227–237. In: G. D. Grice and M. R. Reeve [eds.], Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems. New York: Springer-Verlag.Google Scholar
  49. Takahashi, M., W. H. Thomas, D. L. R. Seibert, J. Beers, P. Koeller, and T. R. Parsons. 1975. The replication of biological events in enclosed water columns. Arch. Hydrobiol 76: 5–23.Google Scholar
  50. Takahashi, M., I. Koike, K. Iseki, P. K. Bienfang, and A. Hattori. 1982. Phytoplankton species’ responses to nutrient changes in experimental enclosures and coastal waters. Pp. 333–340. In: G. D. Grice and M. R. Reeve (eds.], Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems. New York: Springer-Verlag.Google Scholar
  51. Williams, P. J. LeB. 1982. Microbial contribution to overall plankton community respiration - studies in enclosures. Pp. 305–321. In: G. D. Grice and M. R. Reeve [eds.1, Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems. New York: Springer-Verlag.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1990

Authors and Affiliations

  • U. Brockmann

There are no affiliations available

Personalised recommendations