Marine Microcosms: Small-Scale Controlled Ecosystems

  • Pierre Lasserre
Part of the Coastal and Estuarine Studies book series (COASTAL, volume 37)


Since pioneer works in the early 1960s (Odum et al., 1963; Beyers, 1963), laboratory-scale experimental designs are more and more considered as fundamental tools in the development of freshwater and marine ecological research. The word “microcosm” was widely used to designate laboratory-scale aquaria as well as large-scale enclosures (Giesy, 1980) until the term “mesocosm” was coined to designate large-scale enclosures outside the laboratory of volume exceeding 1 m3 (Grice and Reeve, 1982). Therefore, the word “microcosm” is used today to designate a contained and often simplified marine community of volume not exceeding 1 m3, in which controlled experiments can be performed. Such small systems are convenient to compare single species and multispecies properties as to metabolic patterns and physiological characteristics, without the difficulties of replication and sampling. Both micro-and mesocosm approaches have their advantages and difficulties; they should be considered as fully complementary. The ideal microcosm experiment is one in which the investigator manipulates one particular factor, whereas all others are allowed to vary naturally. The factor of interest is controlled, if necessary at a series of different levels. This is the reverse of the classical laboratory “test tube” experiment in which all factors but one are kept rigidly controlled.


Continuous Culture Particulate Organic Carbon Phytoplankton Assemblage Microcosm Study Electron Transport System Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Andersen, F. O. and W. Helder. 1987. Comparison of oxygen microgradients, oxygen flux rates and electron transport system activity in coastal marine sediments. Mar. Ecol. Prog. Ser. 37: 259–264.CrossRefGoogle Scholar
  2. Andersen, J. 0. and E. Kristensen. 1988. The influence of macrofauna on estuarine benthic community metabolism: a microcosm study. Mar. Biol. 99: 591–603.Google Scholar
  3. Beyers, R. J. 1963. The metabolism of twelve aquatic laboratory microecosystems. Ecol. Monogr. 33: 281–306.CrossRefGoogle Scholar
  4. Blackburn, T. H. 1987. Microbial food webs in sediments. Pp. 39–58. In: M. A. Sleigh [ed.], Microbes in the Sea. Chichester: Ellis Horwood, John Wiley.Google Scholar
  5. Blackburn, T. H. and J. Sorensen [eds.]. 1988. Nitrogen Cycling in Coastal Marine Environments. Chichester: John Wiley. 451 pp.Google Scholar
  6. Boucher, G. and S. Chamroux. 1976. Bacteria and meiofauna in an experimental sand ecosystem. I. Material and preliminary results. J. Exp. Mar. Biol. Ecol. 24: 237–249.CrossRefGoogle Scholar
  7. Burkill, P. H. 1987. Analytical flow cytometry and its application to marine microbial ecology. Pp. 139–166. In: M. A. Sleigh [ed.], Microbes in the Sea. Chichester: Ellis Norwood, John Wiley.Google Scholar
  8. Chamroux, S., G. Boucher, and P. Bodin. 1977. Etude expérimentale d’un écosystème sableux. II. Evolution des populations de bactéries et de meiofaune. Helgol. Wiss. Meeresunters. 30: 163–177.CrossRefGoogle Scholar
  9. Characklis, W. G. 1981. Microbial fouling: A process analysis. Pp. 251–291. In: D. A. Sommerscales and E. T. Knudsen [eds.], Fouling of Heat Transfer Equipment. Washington, D.C.: Hemisphere Publishing Corp.Google Scholar
  10. Christiansen, F. B. and T. M. Fenchel. 1977. Theories of Populations in Biological Communities. Berlin: Springer-Verlag. 144 pp.CrossRefGoogle Scholar
  11. Conway, H. L. and P. J. Harrison. 1977. Marine diatoms grown in chemostats under silicate or ammonium limitation. IV. Transient responses of Chaetoceros debilis, Skeletonema costatum and Tha/assiosira gravida to a single addition of the limiting nutrient. Mar. Biol. 43: 33–43.CrossRefGoogle Scholar
  12. Cooper, D. C. and B. J. Copeland. 1973. Responses of continuous-series estuarine microecosystems to point-source input variations. Ecol. Monogr. 43: 213–236.CrossRefGoogle Scholar
  13. Denman, K., W. Calder, C. Davis, S. Demers, M. Estrada, M. Lewis, D. Smith, P. Wangersky, C. Yentsch, and A. Zotin. 1985. Technological developments to implement theory into biological oceanography. Pp. 254–258. In: R. E. Ulanowicz and T. Platt [eds.], Ecosystem Theory for Biological Oceanography. Can. Bull. Fish Aquat. ScL 213.Google Scholar
  14. Droop, M. R. 1976. The chemostat in mariculture. Pp. 71–93. In: 10th Europ. Symp. Marine Biol., Vol. 1. Wetteren, Belgium: Universa Press.Google Scholar
  15. Droop, M. R. and J. M. Scott. 1978. Steady state energetics of a planktonic herbivore. J. Mar. Biol. Ass. U.K. 58: 749–772.CrossRefGoogle Scholar
  16. Dugdale, R. C. 1967. Nutrient limitation in the sea: dynamics, identification, and significance. Limnol. Oceanogr. 12: 685–695.CrossRefGoogle Scholar
  17. Egan, B. 1987. Marine microbial adhesion and its consequences. Pp. 220238. In: M. A. Sleigh [ed.], Microbes in the Sea. Chichester: Ellis Horwood, John Wiley.Google Scholar
  18. Eppley, R. W. and J. L. Coatsworth. 1968. Nitrate and nitrite uptake by Ditylum brightwelli. Kinetics and mechanisms. J. Phycol. 4: 151–156.CrossRefGoogle Scholar
  19. Eppley, R. W., J. H. Sharp, E. H. Renger, M. J. Perry, and W. G. Harrison. 1977. Nitrogen assimilation by phytoplankton and other microorganisms in the surface waters of the central North Pacific Ocean. Mar. Biol. 39: 111–120.CrossRefGoogle Scholar
  20. Estrada, M., M. Alcaraz, and C. Marrasé. 1987. Effects of turbulence on the composition of phytoplankton assemblages in marine microcosms. Mar. Eco% Prog. Ser. 38: 267–281.CrossRefGoogle Scholar
  21. Fenchel, T. 1977. The significance of bactivorous Protozoa in the microbial community of detrital particles. Pp. 529–544. In: J. Cairns [ed.], Aquatic Microbial Communities. New York: Garland Publ.Google Scholar
  22. Fenchel, T. 1980. Suspension feeding in ciliated protozoa: feeding rates and their ecological significance. Microb. Ecol. 6: 13–25.CrossRefGoogle Scholar
  23. Fera, P., M. A. Siebel, W. G. Characklis, and D. Prieur. 1989. Seasonal variations in bacterial colonisation of stainless steel, aluminium and polycarbonate surfaces in a seawater flow system. Biofouling 1: 251261.Google Scholar
  24. Giesy, J. P., Jr. [ed.]. 1980. Microcosms in Ecological Research. DOE Symposium Series 52, CONF-781101. Springfield, VA: National Technical Information Service. 1 110 pp.Google Scholar
  25. Goldman, J. C. 1984. Oceanic nutrient cycles. Pp. 137–170. In: M. J. R. Fasham [ed.], Flows of Energy and Materials in Marine Ecosystems. Theory and Practice. New York: Plenum Press.Google Scholar
  26. Goldman, J. C., J. J. McCarthy, and D. G. Peavey. 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210–215.CrossRefGoogle Scholar
  27. Grice, G. D. and M. R. Reeve [eds.]. 1982. Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems. New York: Springer-Verlag. 430 pp.Google Scholar
  28. Gustafsson, K. and L. Gustafsson. 1985. A microcalorimetric perfusion vessel used for measurement of total activity in sediment samples. J. Microbiol. Methods 4: 103–112.CrossRefGoogle Scholar
  29. Gustafsson, L. 1987. Microcalorimetry as a tool in microbiology and microbial ecology. Pp. 167–181. In: M. A. Sleigh [ed.], Microbes in the Sea. Chichester: Ellis Horwood, John Wiley.Google Scholar
  30. Hamilton, W. A. 1987. Biofilms: microbial interactions and metabolic activities. Sympos. Soc. Gen. Microbiol. 41: 361–385.Google Scholar
  31. Hanson, R. B. and K. R. Tenore. 1981. Microbial metabolism and incorporation by the polychaete Capitella capitata of aerobically and anaerobically decomposed detritus. Mar. Ecol. Prog. Ser. 6: 299–307.CrossRefGoogle Scholar
  32. Hargrave, B. T. and G. A. Phillips. 1981. Annual in situ carbon dioxide and oxygen flux across a subtidal marine sediment. Estuarine Coastal Shelf Sci. 12: 725–737.CrossRefGoogle Scholar
  33. Henriksen, K., J. I. Hansen, and T. H. Blackburn. 1980. The influence of benthic infauna on exchange of inorganic nitrogen between sediment and water. Ophelia Suppl. 1: 249–256.Google Scholar
  34. Hochachka, P. W. and G. N. Somero. 1973. Strategies of Biochemical Adaptation. Philadelphia: W. B. Saunders. 358 pp.Google Scholar
  35. Huq, A., P. A. West, E. B. Small, M. I. Huq, and R. R. Colwell. 1984. Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar 0.1 associated with live copepods in laboratory microcosms. Appl. Environ. Microbiol. 48: 420–424.PubMedGoogle Scholar
  36. Jannasch, H. W. 1967. Enrichments of aquatic bacteria in continuous culture. Arch. Mikrobiol. 59: 165–173.PubMedCrossRefGoogle Scholar
  37. Jannasch, H. W. 1974. Steady state and the chemostat in ecology. Limnol. Oceanogr. 19: 716–720.CrossRefGoogle Scholar
  38. Kristensen, E. and T. H. Blackburn. 1987. The fate of organic carbon and nitrogen in experimental marine sediment systems: Influence of bioturbation and anoxia. J. Mar. Res. 45: 231–257.CrossRefGoogle Scholar
  39. Lamprecht, I. and A. I. Zotin [eds.]. 1978. Thermodynamics of Biological Processes. Berlin and New York: Walter de Gruyter. 428 pp.Google Scholar
  40. Lasserre, P. 1976. Metabolic activities of benthic microfauna and meiofauna: recent advances and review of suitable methods of analysis. Pp. 95142. In: I. McCave [ed.], The Benthic Boundary Layer. New York: Plenum Press.Google Scholar
  41. Lasserre, P. 1980. Energetic role of meiofauna and epifaunal deposit-feeders in increasing level of microbial activity in estuarine ecosystems, at the water-sediment interface. Pp. 309–318. In: Biogéochimie de la Matière Organique à l’interface Eau-Sédiment Marin. Paris: Editions du CNRS.Google Scholar
  42. Lasserre, P. 1984. The measurement of the enthalpy of metabolism in marine organisms. Pp. 247–269. In: M. J. R. Fasham [ed.], Flows of Energy and Materials in Marine Ecosystems. New York: Plenum Press.Google Scholar
  43. Lasserre, P. and T. Tournié. 1984. Use of microcalorimetry for the characterization of marine metabolic activity at the water-sediment interface. J. Exp. Mar. Biol. Ecol. 74: 123–139.CrossRefGoogle Scholar
  44. Lasserre, P., T. Tournié, M. Bianchi, and S. Chamroux. 1986. Heat production of microorganisms in eutrophied estuarine systems - An experimental study. Pp. 161–174. In: P. Lasserre and J. M. Martin [eds.], Biogeochemical Processes at the Land-Sea Boundary. Amsterdam: Elsevier.Google Scholar
  45. Ljungholm, K., B. Noren, R. Sköld, and I. Wadsö. 1979. Use of microcalorimetry for the characterization of microbial activity in soil. Oikos 33: 15–23.CrossRefGoogle Scholar
  46. Lovitt, R. W. and J. W. T. Wimpenny. 1981. The gradostat, a bidirectional compound chemostat, and its application in microbiological research. J. Gen. Microbiol. 127: 261–268.PubMedGoogle Scholar
  47. MacFarlane, G. T., M. A. Russ, S. M. Keith, and R. A. Herbert. 1984. Simulation of microbial processes in estuarine sediments using gel-stabilized systems. J. Gen. Microbiol. 130: 2927–2933.Google Scholar
  48. Maestrini, S. Y. and D. J. Bonin. 1981. Competition among phytoplankton based on inorganic macronutrients. Pp. 264–278. In: T. Platt [ed.], Physiological Bases of Phytoplankton Ecology. Can. Bull. Fish. Aquat. Sci. 210.Google Scholar
  49. Margalef, R. 1963. Modelos simplificados del ambiente marino para el estudio de la sucesion y distribucion del fitoplancton y del indicator de sus pigmentos. lnvestigacion pesq. 23: 11–52.Google Scholar
  50. Margalef, R. 1967. Laboratory analogues of estuarine plankton systems. Pp. 515–524. In: G. H. Lauff [ed.], Estuaries. Baltimore, Md.: Horn-Shafer.Google Scholar
  51. Margalef, R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1: 493–509.Google Scholar
  52. McCarthy, J. J. 1981. The kinetics of nutrient utilization. Pp. 211–233. In: T. Platt [ed.], Physiological Bases of Phytoplankton Ecology. Can. Bull. Fish. Aquat. Sci. 210.Google Scholar
  53. McCarthy, J. J. and J. C. Goldman. 1979. Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters. Science 203: 670–672.PubMedCrossRefGoogle Scholar
  54. McIntyre, A. D., A. L. S. Munro, and J. H. Steele. 1970. Energy flow in a sand ecosystem. Pp. 19–31. In: J. H. Steele [ed.], Marine Food Chains. Berkeley: Univ. California Press.Google Scholar
  55. Monod, J. 1950. La technique de culture continue; théorie et applications. Ann. Inst. Pasteur 79: 390–410.Google Scholar
  56. Nixon, S. W. 1969. A synthetic microcosm. Limnol. Oceanogr. 14: 142–145.CrossRefGoogle Scholar
  57. Nixon, S. W., D. Alonso, M. E. Q. Pilson, and B. A. Buckley. Turbulent mixing in aquatic microcosms. Pp. 818–849. In: J. P. Giesy, Jr. [ed.1, Microcosms in Ecological Research. DOE Symposium Series 52, CONF781101. Springfield, VA: National Technical Information Service.Google Scholar
  58. Novick, A. and L. Sziland. 1950. Experiments with the chemostat on spontaneous mutations of bacteria. Proc. Nat. Acad. Sci. U.S. 36: 708–719.CrossRefGoogle Scholar
  59. de Noyelles, F. and W. J. O’Brien. 1974. The in situ chemostat–a self-contained continuous culturing and water sampling system. Limnol. Oceanogr. 19: 326–331.CrossRefGoogle Scholar
  60. Paffenhöfer, J. 1976. Feeding, growth, and food conversion of the marine planktonic copepod Ca/anus he/go/andicus. Limnol. Oceanogr. 21: 39–50.CrossRefGoogle Scholar
  61. Painting, S. J., M. I. Lucas, and D. G. Muir. 1989. Fluctuations in heterotrophic bacterial community structure, activity and production in response to development and decay of phytoplankton in a microcosm. Mar. Eco% Prog. Ser. 53: 129–141.CrossRefGoogle Scholar
  62. Pamatmat, M. M. 1965. A continuous-flow apparatus for measuring metabolism of benthic communities. Limnol. Oceanogr. 10: 486–489.CrossRefGoogle Scholar
  63. Pamatmat, M. M. 1982. Heat production by sediment: ecological significance. Science 215: 395–397.PubMedCrossRefGoogle Scholar
  64. Pamatmat, M. M. 1984. Measuring the metabolism of the benthic ecosystem. Pp. 223–246. In: M. J. R. Fasham [ed.], Flows of Energy and Materials in Marine Ecosystems. New York: Plenum Press.Google Scholar
  65. Pamatmat, M. M., G. Graf, W. Bengtsson, and C. S. Novak. 1981. Heat production, ATP concentration and electron transport activity of marine sediments. Mar. Eco% Prog. Ser. 4: 234–238.Google Scholar
  66. Parsons, T. R. 1982. The future of controlled ecosystem enclosure experiments. Pp. 411–418. In: G. D. Grice and M. R. Reeve [eds.], Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems. New York: Springer-Verlag.Google Scholar
  67. Parsons, T. R., P. J. Harrison, and R. Waters. 1978. An experimental simulation of changes in diatom and flagellate blooms. J. Exp. Mar. Biol. Eco% 32: 285–294.CrossRefGoogle Scholar
  68. Parsons, T. R. and C. A. Bawden. 1979. A controlled ecosystem for the study of the food requirements of amphipod populations. Estuarine Coastal Shelf Sci. 8: 547–553.Google Scholar
  69. Pederson, K. 1982. Method for studying microbial biofilms in flowing water systems. Appl. Environ. Microbiol. 43: 6–13.Google Scholar
  70. Pilson, M. E. and S. W. Nixon. 1980. Marine microcosms in ecological research. Pp. 724–741. In: J. P. Giesy, Jr. [ed.], Microcosms in Ecological Research. DOE Symposium Series 52, CONF-781101. Springfield, VA: National Technical Information Service.Google Scholar
  71. Platt, T. 1981. Physiological Bases of Phytoplankton Ecology. Can. Bull. Fish. Aquat. Sci. 210. 346 pp.Google Scholar
  72. Platt, T., K. H. Mann, and R. E. Ulanowicz. 1981. Mathematical Mode/s in Biological Oceanography. Paris: The Unesco Press. 157 pp.Google Scholar
  73. Prigogine, I. and J. M. Wiame. 1946. Biologie et thermodynamique des phénomènes irréversibles. Experientia 2: 451–453.PubMedCrossRefGoogle Scholar
  74. Regnault, M. 1986. Production d’NH4+ par la crevette Crangon crangon L. dans deux écosystèmes côtiers. Approche expérimentale et étude de l’influence du sédiment sur le taux d’excrétion. J. Exp. Mar. Biol. Eco% 100: 113–126.CrossRefGoogle Scholar
  75. Regnault, M., R. Boucher-Rodoni, G. Boucher, and P. Lasserre. 1988. Effects of macrofauna excretion and turbulence on inorganic nitrogenous exchanges at the water-sediment interface. Experimental approach in microcosms. Cah. Biol. Mar. 29: 427–444.Google Scholar
  76. Revsbech, N. P. 1983. In situ measurement of oxygen profiles of sediments by use of oxygen microelectrodes. Pp. 265–273. In: E. Gnaiger and H. Forstner [eds.], Polarographic Oxygen Sensors. Aquatic and Physiological Applications. Berlin & New York: Springer-Verlag.Google Scholar
  77. Rice, D. L. and R. B. Hanson. 1984. A kinetic model for detritus nitrogen: role of the associated bacteria in nitrogen accumulation. Bull. Mar. Sci. 35: 326–340.Google Scholar
  78. Ringelberg, J. 1977. Properties of an aquatic micro-ecosystem. He/gol. Wiss. Meeresunters. 30: 134–143.CrossRefGoogle Scholar
  79. Schneider, E. D. 1988. Thermodynamics, ecological succession, and natural selection: a common thread. Pp. 107–138. In: B. H. Weber, D. J. Depew, and J. D. Smith [eds.], Entropy, Information and Evolution. Cambridge, Mass.: MIT Press.Google Scholar
  80. Scott, J. M. 1980. Effect of growth rate of the food alga on the growth/ingestion efficiency of a marine herbivore. J. Mar. Biol. Ass. U.K. 60: 681–702.CrossRefGoogle Scholar
  81. Scott, J. M.. 1985. The feeding rates and efficiencies of a marine ciliate, Strombidium sp., grown under chemostat steady-state conditions. J. Exp. Mar. Biol. Ecol. 90: 81–95.CrossRefGoogle Scholar
  82. Steele, J. H. 1979. The uses of experimental ecosystems. Phil. Trans. R. Soc. Lond., B. 286: 583–595.Google Scholar
  83. Stephenson, W. and R. B. Searles. 1960. Experimental studies on the ecology of intertidal environments at Heron Island. I. Exclusion of fish from beach rock. Aust. J. Mar. Freshwat. Res. 11: 241–267.CrossRefGoogle Scholar
  84. Taub, F. B. 1969. A biological model of a freshwater community: a gnotobiotic ecosystem. Limnol. Oceanogr. 14: 136–142.CrossRefGoogle Scholar
  85. Taub, F. B. and M. E. Crow. 1980. Synthesizing aquatic microcosms. Pp. 69–104. In: J. P. Giesy, Jr. [ed.], Microcosms in Ecological Research. DOE Symposium Series 52, CONF-781101. Springfield, VA: National Technical Information Service.Google Scholar
  86. Tenore, K. R. 1987. Nitrogen in benthic food chains. Pp. 191–206. In: T. H. Blackburn and J. Sorensen [eds.], Nitrogen Cycling in Coastal Marine Environments. New York: Wiley.Google Scholar
  87. Tenore, K. R., R. B. Hanson, J. McClain, A. E. MacCubbin, and R. E. Hobson. 1984. Changes in composition and nutritional value to a benthic deposit feeder of decomposing detritus pools. Bull. Mar. Sci. 35: 299–31 1.Google Scholar
  88. Tournié, T. and P. Lasserre. 1984. Microcalorimetry characterization of seasonal metabolic trends in marine microcosms. J. Exp. Mar. Biol. Ecol. 74: 111–121.CrossRefGoogle Scholar
  89. Valiella, I., J. Wilson, R. Buchsbaum, C. Rietsma, D. Bryant, K. Foreman, and J. Teal. 1984. Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores. Bull. Mar. Sci. 35: 261–269.Google Scholar
  90. Veldkamp, H. and H. W. Jannasch. 1972. Mixed culture studies with the chemostat. J. Appl. Chem. Biotechnol. 22: 105–123.CrossRefGoogle Scholar
  91. Vernberg, F. J. and W. B. Vernberg. 1981. Functional Adaptations of Marine Organisms. New York: Academic Press. 347 pp.Google Scholar
  92. Whittaker, R. H. 1961. Experiments with radiophosphorus tracer in aquarium microcosms. Ecol. Monogr. 31: 157–187.CrossRefGoogle Scholar
  93. Wimpenny, J. W. T. 1981. Spatial order in microbial ecosystems. Biol. Rev. 56: 295–342.CrossRefGoogle Scholar
  94. Wimpenny, J. W. T. and A. Peters. 1987. Ecology on the microscale. Pp. 59–82. In: M. A. Sleigh [ed.], Microbes in the Sea. Chichester: Ellis Horwood, John Wiley.Google Scholar
  95. Wimpenny, J. W. T., J. P. Coombs, R. W. Lovitt, and A. Whittaker. 1981. A gel-stabilized model ecosystem for the investigation of microbial growth in spatially ordered solute gradients. J. Gen. Microbiol. 127: 277–287.Google Scholar
  96. Yentsch, C. M., P. K. Horan, K. Muirhead, Q. Dortch, E. Haugen, L. Legendre, L. S. Murphy, M. J. Perry, D. A. Phinney, S. A. Pomponi, R. W. Spinrad, M. Wood, C. S. Yentsch, and B. J. Zhahuranec. 1983. Flow cytometry and cell sorting: a technique for analysis and sorting of aquatic particles. L imnol. Oceanogr. 28: 1275–1280.CrossRefGoogle Scholar
  97. Zeitzschel, B. 1981. Field experiments on benthic ecosystems. Pp. 607625. In: A. Longhurst [ed.], Analysis of Marine Ecosystems. New York: Academic Press.Google Scholar
  98. Zotin, A. I. 1985. Thermodynamics and the growth of organisms in ecosystems. Pp. 27–37. In: R. E. Ulanowicz and T. Platt [eds.], Ecosystem Theory for Biological Oceanography. Can. Bull. Fish Aquat. Sci. 213.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1990

Authors and Affiliations

  • Pierre Lasserre

There are no affiliations available

Personalised recommendations