The Use of Mathematical Models in Conjunction With Mesocosm Ecosystem Research

  • T. R. Parsons
Part of the Coastal and Estuarine Studies book series (COASTAL, volume 37)


The use of mathematical models in conjunction with mesocosm research has been reviewed. Models have assisted in illustrating the shortcomings of mesocosm research. At the same time, ecosystem models have profited from good time-series data such as can only be obtained from mesocosm experiments. Mathematical models should continue to be an important integral part of mesocosm research.


Mixed Layer Depth Mine Tailing Plankton Community Standing Stock Zooplankton Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Andersen, V., P. Nival, and R. Harris. 1987. Modelling of a planktonic ecosystem in an enclosed water column. J. Mar. Biol. Ass. U.K. 67: 407–430.CrossRefGoogle Scholar
  2. Bazin, M. J. 1981. Theory of continuous culture. Pp. 27–62. In: P. H. Calcott [ed.], Continuous Culture of Cells. Boca Ratton, Florida: CRC Press.Google Scholar
  3. Bradbury, R. H., L. S. Hammond, and R. E. Reichelt. 1984. Prediction versus explanation in environmental impact assessment. Search 14: 323–325.Google Scholar
  4. Bratbak, G. 1987. Carbon flow in an experimental microbial ecosystem. Mar. Ecol. Prog. Ser. 36: 267–276.CrossRefGoogle Scholar
  5. Bratbak, G. and T. F. Thingstad. 1985. Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism. Mar. Ecol. Prog. Ser. 25: 23–30.CrossRefGoogle Scholar
  6. Davies, J. M. and P. J. B. Williams. 1984. Verification of 14C and 02 derived primary organic production measurements using an enclosed ecosystem. J. Plankton Res. 6: 457–474.CrossRefGoogle Scholar
  7. Doering, P. H. and C. A. Oviatt. 1986. Application of filtration rate models to field populations of bivalves: an assessment using experimental mesocosms. Mar. Ecol. Prog. Ser. 31: 265–275.CrossRefGoogle Scholar
  8. Hay, S. J., G. T. Evans, and J. C. Gamble. 1988. Birth, growth and death rates for enclosed populations of calanoid copepods. J. Plankton Res. 10: 431–454.CrossRefGoogle Scholar
  9. Laake, M., A. B. Dahle, K. Eberlein, and K. Rein. 1983. A modeling approach to the interplay of carbohydrates, bacteria and non-pigmented flagellates in a controlled ecosystem experiment with Skeletonema costatum. Mar. Ecol. Prog. Ser. 14: 71–79.CrossRefGoogle Scholar
  10. Lane, P. A. 1986. Symmetry, change, perturbation, and observing mode in natural communities. Ecology 67: 223–239.CrossRefGoogle Scholar
  11. Lane, P. A. and R. Levins. 1977. The dynamics of aquatic systems. 2. The effect of nutrient enrichment on model plankton communities. Limnol. Oceanogr. 22: 454–471.CrossRefGoogle Scholar
  12. Lane, P. A. and T. M. Collins. 1985. Food web models of a marine plankton community network: An experimental mesocosm approach. J. Exp. Mar. Biol. Ecol. 94: 41–70.CrossRefGoogle Scholar
  13. Nixon, S. W., C. A. Oviatt, J. N. Kremer, and K. Perez. 1979. The use of numerical models and laboratory microcosms in estuarine ecosystem analysis - Simulation of a winter phytoplankton bloom. Pp. 165–189. In: R. F. Dame [ed.], Marsh-Estuary Systems Simulation. Columbia, SC: Univ. South Carolina Press.Google Scholar
  14. Parsons, T. R., W. H. Thomas, D. Seibert, J. R. Beers, P. Gillespie, and C. Bawden. 1977. The effect of nutrient enrichment on the plankton community in enclosed water columns. Int. Rev. Ges. Hydrobiol. 62: 565–572.CrossRefGoogle Scholar
  15. Parsons, T. R., T. A. Kessler, and Li Guanguo. 1986. An ecosystem model analysis of the effect of mine tailings on the euphotic zone of a pelagic ecosystem. Acta Oceanologica Sinica 5: 425–436.Google Scholar
  16. Parsons, T. R. and T. A. Kessler. 1987. An ecosystem model for the assessment of plankton production in relation to the survival of young fish. J. Plankton Res. 9: 125–137.CrossRefGoogle Scholar
  17. Parsons, T. R. and A. H. Taylor. (In press) The effect of vertical mixing on ecosystem dynamics in large mesocosms. Proceedings IMEEES Symposium Beijing, 1987.Google Scholar
  18. Platt, T., K. H. Mann, and R. E. Ulanowicz. 1981. Mathematical Models in Biological Oceanography. UNESCO Monograph on Oceanic Methodology, No. 7. Paris: The UNESCO Press. 156 pp.Google Scholar
  19. Reynolds, C. S., S. W. Wiseman, B. M. Godfrey, and C. Butterwick. 1983. Some effects of artificial mixing on the dynamics of phytoplankton populations in large limnetic enclosures. J. Plankton Res. 5: 203–234.CrossRefGoogle Scholar
  20. Sonntag, N. C. and T. R. Parsons. 1979. Mixing an enclosed, 1,300 m3 water column: effects on the planktonic foodweb. J. Plankton Res. 1: 85–102.CrossRefGoogle Scholar
  21. Sonntag, N. C. and J. Parslow. 1981. Technique of systems identification applied to estimating copepod production. J. Plankton Res. 3: 461–473.CrossRefGoogle Scholar
  22. Steele, J. H. and E. W. Hendersen. 1981. A simple plankton model. Am. Naturalist 117: 676–691.CrossRefGoogle Scholar
  23. Wangersky, P. J. 1982. Model ecosystems: the limits of predictability. Thalass. Jugosla vica 18: 1–10.Google Scholar
  24. Wangersky, P. J. and C. P. Wangersky. 1983. The Manna effect: paradox of the plankton. Int. Rev. Ges. Hydrobiol. 68: 327–338.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1990

Authors and Affiliations

  • T. R. Parsons

There are no affiliations available

Personalised recommendations