Mesocosms: Statistical and Experimental Design Considerations

  • John C. Gamble
Part of the Coastal and Estuarine Studies book series (COASTAL, volume 37)


Large-scale enclosure (mesocosm) experiments do not lend themselves to conventional methods of experimental design involving the use of inferential statistics. When considering design criteria for mesocosm experiments, it is therefore necessary to examine the rigor of the proposed replication, to make allowance for inherent spatial and temporal heterogeneity, and to consider alternative experimental strategies.


Sewage Sludge Larval Fish Mine Tailing Inferential Statistic Mesocosm Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Cohen, J. 1979. Statistical Power Analysis for the Behavioural Sciences. New York: Academic Press. 474 pp.Google Scholar
  2. Fuiman, L. A. and J. C. Gamble. 1988. Predation by Atlantic herring, sprat and sandeels on herring larvae in large enclosures. Mar. Ecol. Prog. Ser. 44: 1–6.CrossRefGoogle Scholar
  3. Gamble, J. C. and L. A. Fuiman. 1987. Evaluation of in situ enclosures during a study of the importance of starvation to the vulnerability of herring larvae to a piscine predator. J. Exp. Mar. Biol. Ecol. 113: 91–103.CrossRefGoogle Scholar
  4. Gamble, J. C., J. M. Davies, S. J. Hay, and F. K. Dow. 1987. Mesocosm experiments on the effects of produced water discharges from offshore oil platforms in the northern North Sea. Sarsia 72: 383–386.Google Scholar
  5. Green, R. 1979. Sampling Design and Statistical Methods for Environmental Biologists. New York: Wiley. 257 pp.Google Scholar
  6. Hay, S. J., G. T. Evans, and J. C. Gamble. 1988. Birth, growth and death rates for enclosed populations of calanoid copepods. J. Plankton Res. 10: 431–454.CrossRefGoogle Scholar
  7. Hurlbert, S. 1984. Pseudoreplication and the design of ecological fish experiments. Ecol. Monogr. 54: 187–211.CrossRefGoogle Scholar
  8. Lafontaine, Y. and W. C. Leggett. 1987. Evaluation of in situ enclosures for larval fish studies. Can. J. Fish. Aquat. Sci. 44: 54–65.CrossRefGoogle Scholar
  9. Lafontaine, Y. and W. C. Leggett. 1987. Effect of container size on estimates of mortality and predation rates in experiments with macrozooplankton and larval fish. Can. J. Fish. Aquat. Sci. 44: 15341543.Google Scholar
  10. Lawson, T. J. and G. D. Grice. 1977. Zooplankton sampling variability: controlled ecosystem pollution experiment. Bull. Mar. Sci. 27: 80–84.Google Scholar
  11. Menzel, D. W. 1977. Summary of experimental results: controlled ecosystem pollution experiment. Bull. Mar. Sci. 27: 142–145.Google Scholar
  12. Menzel, D. W. and J. Case. 1977. Concept and design: controlled ecosystem pollution experiment. Bull. Mar. Sci. 27: 1–7.Google Scholar
  13. Menzel, D. W. and J. H. Steele. 1978. The application of plastic enclosures to the study of pelagic marine biota. Rapp. P.-V. Réun. Cons. Perm. Int. Explor. Mer 173: 13–21.Google Scholar
  14. Oviatt, C. A., K. T. Perez, and S. W. Nixon. 1977. Multivariate analysis of experimental marine ecosystems. He/gol. Wiss. Meeresunters. 30: 30–46.CrossRefGoogle Scholar
  15. Oviatt, C. A., H. Walker, and M. E. Q. Pilson. 1980. An exploratory analysis of microcosm ecosystem behaviour using multivariate techniques. Mar. Ecol. Prog. Ser. 2: 179–191.CrossRefGoogle Scholar
  16. Oviatt, C. A., J. G. Quinn, J. T. Maughan, J. J. Ellis, B. K. Sullivan, J. N. Gearing, P. J. Gearing, C. D. Hunt, P. A. Sampou, and J. S. Latimer. 1987. Fate and effects of sewage sludge in the coastal marine environment; a mesocosm experiment. Mar. Ecol. Prog. Ser. 41: 187–203.CrossRefGoogle Scholar
  17. Parsons, T. R., K. von Brockel, P. Koeller, M. Takahashi, M. R. Reeve, and O. Holm-Hansen. 1977. The distribution of organic carbon in a marine planktonic food web following nutrient enrichment. J. Exp. Mar. Biol. Ecol 26: 235–247.CrossRefGoogle Scholar
  18. Parsons, T. R., P. Thompson, Wu Yong, C. M. Lallì, Hou Shumin, and Xu Huaishu. 1986. The effect of mine tailings on the production of plankton. Acta Oceanologica Sinica 5: 417–423.Google Scholar
  19. Pilson, M. E. Q., C. A. Oviatt, G. L. Vargo, and S. L. Vargo. 1979.Google Scholar
  20. Replicability in MERL microcosms: initial observations. Pp. 359–381. In: F. S. Jacoff [ed.], Advances in Marine Environmental Research. Proceedings of a Symposium, June 1977. EPA–600/9–79–035, US, EPA, Environ. Res. Lab. Narragansett, RI.Google Scholar
  21. Smith, W., V. R. Gibson, and J. F. Grassle. 1982. Replication in controlled marine systems: presenting the evidence. Pp. 217–225. In: G. D. Grice and M. R. Reeve [eds.], Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems. New York: Springer-Verlag.Google Scholar
  22. Stephenson, G. L., P. Hamilton, N. K. Kanshik, J. B. Robinson, and K. R. Solomon. 1984. Spatial distribution of plankton in enclosures of three sizes. Can. J. Fish. Aquat. Sci. 41: 1048–1054.CrossRefGoogle Scholar
  23. Takahashi, M., W. H. Thomas, D. L. R. Seibert, J. Beers, P. Koeller, and T. R. Parsons. 1975. The replication of biological events in enclosed water columns. Arch. Hydrobiol. 76: 5–23.Google Scholar
  24. Underwood, A. J. and C. H. Peterson. 1988. Towards an ecological framework for investigating pollution. Mar. Ecol. Prog. Ser. 46: 227234.Google Scholar
  25. Warwick, R. M., M. R. Carr, K. R. Clarke, J. M. Gee, and R. H. Green. 1988. A mesocosm experiment on the effects of hydrocarbon and copper pollution on a sublittoral soft-sediment meiobenthic community. Mar. Ecol. Prog. Ser. 46: 181–191.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1990

Authors and Affiliations

  • John C. Gamble

There are no affiliations available

Personalised recommendations