Advertisement

Atmospheric Excitation of the Earth’s Rotation

  • J. O. Dickey
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 105)

Abstract

Earth rotation and polar motion studies have clearly demonstrated the unprecedented accuracy achieved by the techniques of modern space geodesy. High quality estimates of the atmospheric excitation of Earth rotation and polar motion, provided by the routine analyses of global weather data for operational weather forecasting, together with the modern Earth orientation measurements, have allowed new insight into the atmospheric and non-atmospheric excitation of Earth rotation and polar motion. Recent advances are highlighted together with anticipated advances and prospects for the future.

Keywords

Very Long Baseline Interferometry Earth Rotation Polar Motion Southern Oscillation Index Space Geodesy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brzezinski, A., (1987). Statistical Investigations on Atmospheric Angular Momentum Fluctuations and Their Effect on Polar Motion, Manuscripta Geodaetica, 12, 268–281.Google Scholar
  2. Chao, B. F. (1984). Geophys. Res. Lett. 11, 541–544.CrossRefGoogle Scholar
  3. Chao, B. F. (1989). Length-of-Day Variations Caused by El Nino/Southern Oscillation and the Quasi-Biennial Oscillation, Science, 243, 923–925.CrossRefGoogle Scholar
  4. Dickey, J. O. and Eubanks, T. M. (1986). Space Geodesy and Geodynamics, Academic Press, eds., A. J. Anderson and A. Cazenave, 221–269.Google Scholar
  5. Dickey, J. O., Eubanks, T. M., and Hide, R. (1989). Geophysical Monograph Series of the American Geophysical Union, Proceedings of the International Union of Geodesy and Geophysics (IUGG), Interdisciplinary Symposium, Variations in the Earth’s Rotation, IUGG XIX General Assembly (Vancouver, August 1987), (ed., D. McCarthy), American Geophysical Union; Washington, D.C.Google Scholar
  6. Djurovic, D. and Paquet, P. (1988). The Solar Origin of the 50-Day Fluctuation of the Earth Rotation and Atmospheric Circulation, Astron. Astrophys., 204, 306–312.Google Scholar
  7. Eubanks, T. M., Steppe, J. A., Dickey, J. O., Rosen, R. D., and Salstein, D. A. (1988), Causes of Rapid Motions of the Earth’s Pole, Nature, 334, 115–119.CrossRefGoogle Scholar
  8. Eubanks, T. M., Dickey, J. O., and Steppe, J. A., (1985). Tropical Ocean-Atmosphere Newsletter, 29, 21–23.Google Scholar
  9. Eubanks, T. M., Steppe, J. A., and Dickey, J. O. (1986) NATO Advanced Research Workshop (co-sponsored by the Council of Europe), Earth Rotation: Solved and Unsolved Problems, NATO Advanced Institute Series C: Mathematical and Physical Sciences, ed. A. Cazenave, D. Reidel, Boston, 187, 163–186.Google Scholar
  10. Ghil, M. and Childress, S. (1987). Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory and Climate Dynamics. Springer-Verlag, New York/Berlin, 485.CrossRefGoogle Scholar
  11. Hide, R. (1986). Quart. J. Roy. Astron. Soc., 27, 3–20.Google Scholar
  12. Kolaczek, B. and Kosek, W. (1989). Geophysical Monograph Series of the American Geophysical Union, Proceedings of the International Union of Geodesy and Geophysics (IUGG), Interdisciplinary Symposium, Variations in the Earth’s Rotation, IUGG XIX General Assembly (Vancouver, August 1987), (ed., D. McCarthy), American Geophysical Union; Washington, D.C.Google Scholar
  13. Lambeck, K. (1988). The Earth’s Variable Rotation: Some Geophysical Causes, The Earth’s Rotation and Reference Frames for Geodesy and Geodynamics (eds. A. K. Babcock and G. A. Wilkins ), Kluwer Academic Publishers (Dordrecht), 1–20.Google Scholar
  14. Legras, B. and Ghil, M. (1985). Persistent Anomalies, Blocking and Variations in Atmospheric Predictability. J. Atmos. Sci., 42, 433–471.CrossRefGoogle Scholar
  15. Madden, R. A. and Julian, P. R. (1972). Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period, J. Atmos. Sci., 29, 1109–1123.CrossRefGoogle Scholar
  16. Madden, R. A. and Julian, P. R. (1971). Detection of a 40-50 Day Oscillation in the Zonal Wind in the Tropical Pacific, J. Atmos. Sci., 28, 702–708.CrossRefGoogle Scholar
  17. Mueller, I.I., and Zerbini, S. (eds.) (1989). The Interdisciplinary Role of Space Geodesy, Lecture Note in Earth Sciences, Springer-Verlag (Berlin).Google Scholar
  18. Philander, S. G. H., (1983). Nature, 302, 295–301.CrossRefGoogle Scholar
  19. Rasmusson, E. U. and Wallace, J. M. (1983). Science, 222, 1195–1202.CrossRefGoogle Scholar
  20. Rochester, M. G. (1984). Phil Trans. R. Soc. Lond, A, 313, 95–105.CrossRefGoogle Scholar
  21. Rosen, R. D., Salstein, D. A., Eubanks, T. M., Dickey, J. O. and Steppe, J. A. (1984). Science, 225, 411–414.CrossRefGoogle Scholar
  22. Rosen, R. D., Salstein, D. A., Wood, T. M. (1989). Discrepancies in the Earth- Atmosphere Angular Momentum Budget, Journal of Geophysical Research, in press.Google Scholar
  23. Salstein, D. A. and Rosen, R. D., J. Clim. and Appl. Meteorol, 25, 1870–1877.Google Scholar
  24. Salstein, D. A. and Rosen, R. D. (1989). Regional Contributions to the Atmospheric Excitation of Rapid Polar Motion, Journal of Geophysical Research-Atmospheres, 94, D7, 9971–9978.CrossRefGoogle Scholar
  25. Wahr, J. M. (1986). Space Geodesy and Geodynamics, A. J. Anderson and A. Cazenave, eds., Academic Press, London, 281–313.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • J. O. Dickey
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations