On Polar Motion Equations Applied for Analysis of the Short Term Atmospheric Excitation

  • Aleksander Brzeziński
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 105)


The atmospheric excitation data for earth rotation studies are published recently as the so-called “effective angular momentum” functions introduced by Barnes et al (1983). In applications, however, the corresponding polar motion equation is usually simplified to the form of the classical equation given by Munk and MacDonald (1960). The difference between these two equations is small only for perturbations which are slow compared to the diurnal cycle.

In this paper both forms of the polar motion equation are compared from the point of view of their application for analysis of the short-term excitations. It is also shown how the original equation of Barnes et al (1983) can be reduced to the form required by the Kalman filtering method. The solution includes stochastic models for the angular momentum function and for diurnal oscillations in polar motion data. The analytical expression for the corresponding transition matrix is given and the observability conditions are derived.


Excitation Function Observability Condition Polar Motion Diurnal Oscillation Free Core Nutation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes R. T. H., Hide R., White A. A., and Wilson C. A. (1983). Atmospheric angular momentum fluctuations, length-of-day changes and polar motion, Proc. R. Soc. London, A387, 31–73.CrossRefGoogle Scholar
  2. Brzezinski A. (1986). Contribution to the theory of polar motion for an elastic earth with liquid core, Manuscripta geodaetica, 11, 226–241.Google Scholar
  3. Brzezinski A. (1987a). Statistical investigations on atmospheric angular momentum functions and on their effects on polar motion, manuscripta geodaetica, 12, 268–281.Google Scholar
  4. Brzezinski A. (1987b). Polar motion and excitation functions, Mitteilungen der geodät. Inst, der Technischen Universität Graz, Folge 58, Graz, Austria.Google Scholar
  5. Brzezinski A. (1989). Polar motion excitation by variations of the effective angular momentum function: considerations concerning deconvolution problem, paper submitted to “manuscripta geodaetica”.Google Scholar
  6. Eubanks T. M., Steppe J. A., Dickey J. 0., Rosen R. D., and Salstein D. A. (1988). Causes of rapid motions of the earth’s pole, Nature, 334, 115–119.Google Scholar
  7. Gelb A., (ed.) (1974). Applied Optimal Estimation, The M.I.T. Press, Cambridge, Mass., (reprint 1986 ).Google Scholar
  8. Morabito D. D., Eubanks T. M., and Steppe J. A. (1987). Kaiman filtering of earth orientation changes, Proc. IAU Symp. 128, Kluwer, Dordrecht, 257–267.Google Scholar
  9. Mueller I. I., and Zerbini S. (eds.) (1989). The Interdisciplinary Role of Space Geodesy, Proc. of an International Workshop, Springer Verlag.CrossRefGoogle Scholar
  10. Münk W. H., and MacDonald G. J. F. (1960). The Rotation of the Earth: A Geophysical Discussion, Cambridge Univ. Press (reprint 1975 ).Google Scholar
  11. Sasao T., and Wahr J. M. (1981). An excitation mechanism for the “free core nutation”, Geophys. J. R. Astr. Soc., 64, 729–746.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Aleksander Brzeziński
    • 1
  1. 1.Space Research CentrePolish Academy of SciencesWarsawPoland

Personalised recommendations