D-Controllability and Strong D-Controllability and Control of Multiparameter and Multiple Time-Scale Singularly Perturbed Systems

  • Xu Kekang
  • Wang Zhenquan
Conference paper
Part of the Advances in Simulation book series (ADVS.SIMULATION, volume 1)


Concepts of D-controllability and strong D-controllability are introduced, in terms of which controllability of multiparameter and multiple time-scale singularly perturbed systems is investigated, even regardless of the relative magnitudes of the singular perturbation parameters.


Singular Perturbation Perturbation Parameter Multiple Time Scale Singularly Perturb Singular Perturbation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Saksena, V. R., J. O’Reilly and P.V. Kokotovic: Singular perturbations and time-scale methods in control theory: survey 1976-1983, Aut. 20, (1984), 273–297.MathSciNetMATHGoogle Scholar
  2. [2].
    Khalil, H.K and P.V. Kokotovic: Control of linear systems with multiparameter singular perturbations, Atu. 15. (1979), 197–207.MathSciNetMATHGoogle Scholar
  3. [3].
    Abed, E.H. and A.L. Tits: On the stability of multiple time-scale systems, Int. J. Control, 44,1 (1986), 211–218.MathSciNetMATHCrossRefGoogle Scholar
  4. [4].
    Khalil, H.K. and P.V. Kokotovic: Control strategies for decision makers using different models of the same system, IEEE Trans. AC-23:2, (1978).MathSciNetGoogle Scholar
  5. [5].
    Ladde, G.S. and D.D. Siljak: Multiparameter singular perturbations of linear systems with multiple time scales, Aut. 19,(1983), 385–394.MathSciNetMATHGoogle Scholar
  6. [6].
    Khalil, H.K. and P.V. Kokotovic: D-stability and multiparameter singular perturbation, SIAM. J. Contr. Opti. 17,1, (1979)Google Scholar
  7. [7].
    Abed, E.H.: Strong D-stability, Systems & Control letters, 7, (1986), 207–212.MathSciNetMATHGoogle Scholar
  8. [8].
    Xu, K. K.: Singular perturbations in control systems, Academia Press, Beijing, 1986.Google Scholar
  9. [9].
    Abed, E. H.: Decomposition and stability of multiparameter singular perturbation problems, IEEE Trans. AC-31:10, (1986), 925–934.Google Scholar

Copyright information

© Akademie-Verlag Berlin 1988

Authors and Affiliations

  • Xu Kekang
    • 1
  • Wang Zhenquan
    • 1
  1. 1.Academia SinicaInstitute of Systems ScienceBeijingChina

Personalised recommendations