Advertisement

Optimization and Simulation in Control Design

  • Wien Inge Troch
Conference paper
Part of the Advances in Simulation book series (ADVS.SIMULATION, volume 1)

Abstract

Methods for computing optimal controls are reviewed and compared in view or their applicability for solving real world problems. Further, the importance of a solution-oriented modelling is emphasized.

Keywords

Maximum Principle Optimal Control Problem Parameter Optimization Problem Linear State Feedback Simulation Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Athans, P.L. Falb, Optimal Control, McGrawHill, New York, 1966.Google Scholar
  2. [2]
    I. Bausch-Gall (1982), Parameteroptimierung bei technischen Modellen mittels einer kontinuierlichen Simulationssprache. In: Simulationstechnik (Ed.: M. Goller), Springer Verlag, Berlin, 266–273CrossRefGoogle Scholar
  3. [3]
    R.E. Bellman, S.E. Dreyfus, Applied Dynamic Programming, Princeton University Press, Princeton, 1962.MATHGoogle Scholar
  4. [4]
    W.G. Boltjanski, Mathematische Methoden der optimalen Steuerung, Akadem. Verlagsges., Leipzig, 1971.Google Scholar
  5. [5]
    W.G. Boltjanski, Optimale Steuerung diskreter Systeme, Akad.Verlagsges., Leipzig, 1976.MATHGoogle Scholar
  6. [6]
    F. Breitenecker, Optimierung in kontinuierlichen Simulationssprachen-Aspekte bei Modellen technischer Systeme. In: Simulationstechnik (F. Breitenecker, W. Kleinert), Springer Verlag, 1984, 656–660Google Scholar
  7. [7]
    F. Breitenecker, R. Ruzicka, A. Sauberer, I. Troch: Die ACSL-Optimie-rungsumgebung GOMA zur Berechnung optimaler Steuerungen. In “Stand und Entwicklungstendenzen der Automatisierungstechnik” (Ed.: P. Kopacek), ÖPWZ, Wien, 1988, 61–65Google Scholar
  8. [8]
    A.E. Bryson, Y.C. Ho, Applied Optimal Control, Wiley, New York, 1975Google Scholar
  9. [9]
    D. Burley, Studies in Optimization, Intertext, Leighton Buzzard, 1974Google Scholar
  10. [10]
    S.E. Dreyfus, Dynamic Programming and the Calculus of Variations, Academic Press, New York, 1965.MATHGoogle Scholar
  11. [11]
    R. Fletcher (Ed.), Optimization, Academic Press, New York, 1969.MATHGoogle Scholar
  12. [12]
    R. Fletcher, Practical Methods of Optimization, I,II, Wiley, Chichester, 1980.MATHGoogle Scholar
  13. [13]
    P.E. Gill, W. Murray, M. Wright, Practical Optimization, Academic Press, New York, 1981.MATHGoogle Scholar
  14. [14]
    P.E. Gill, W. Murray (Eds.), Practical Methods for Constrained Optimization, Academic Press, London, 1974.Google Scholar
  15. [15]
    C. Großmann, A.A. Kaplan, Strafmethoden und modifizierte Lagrangefunktionen in der nichtlinearen Optimierung, Teubner, Leipzig, 1979.Google Scholar
  16. [16]
    M. Gräff, Die Berechnung von optimalen Steuerungen für dynamische Prozesse durch Parameteroptimierung, Bericht 2 (1986), Abt.Regelungsmath. Hybridrechen-und Simulationstechnik, TU Wien, 63 pp.Google Scholar
  17. [17]
    M. Gräff, F. Breitenecker, I. Troch, Praktische Parameteroptimierung in ACSL. Interface Nr. 23, (1986) HRZ, TU Wien, 9–14.Google Scholar
  18. [18]
    L. Hasdorff, Gradient Optimization and Nonlinear Control, Wiley, New York, 1976.Google Scholar
  19. [19]
    M. Hestenes, Conjugate Direction Methods in Optimization, Springer, New York, 1980.MATHGoogle Scholar
  20. [20]
    D.H. Jacobson, D.Q. Mayne, Differential Dynamic Programming, Wiley, New York, 1970.MATHGoogle Scholar
  21. [21]
    H.W. Knobloch, Das Pontryagin’sehe Maximumprinzip für Probleme mit Zustandsbeschränkung, I, II, ZAMM 55 (1975), 545–556, 621-634.MathSciNetMATHGoogle Scholar
  22. [22]
    J.P. LaSalle, The Bang-Bang-Principle, Proc. 1st IFAC Congress (1960), 493–497.Google Scholar
  23. [23]
    G. Leitmann, Einführung in die Theorie optimaler Steuerungen, Oldenbourg München, 1974.Google Scholar
  24. [24]
    R.S. Pindyck, An Application of the Linear Quadratic Tracking Problem to Economic Stabilization Policy, IEEE-Trans., AC-17 (1972), 287–300MathSciNetCrossRefGoogle Scholar
  25. [25]
    L.S. Pontrjagin et al., Mathematische Theorie optimaler Prozesse, Oldenbourg, München, 1964.Google Scholar
  26. [26]
    A. Sauberer, R. Ruzicka, F. Breitenecker, I. Troch: Implementation der Optimierungsumgebung “GOMA” in ACSL. In: Simulationstechnik (Ed.: J. Halin), Springer-Verlag, Berlin, 1987, 222–231CrossRefGoogle Scholar
  27. [27]
    H.K. Schulze, Die Methode des adaptiven Suchschlauchs zur Lösung von Variationsproblemen mit Dynamic-Programming-Verfahren, EDV 3 (1966)Google Scholar
  28. [28]
    I. Troch: Simulation and Optimisation. Proc.European Congress on Simulation, Prag 1987 (Ed.: V. Hamata), vol. B, 315–321.Google Scholar

Copyright information

© Akademie-Verlag Berlin 1988

Authors and Affiliations

  • Wien Inge Troch
    • 1
  1. 1.Technische UniversitaetWienAustria

Personalised recommendations