A Route to Chaos

  • Wolfgang Metzler
Conference paper
Part of the Advances in Simulation book series (ADVS.SIMULATION, volume 1)


The route to chaos of the coupled logistic map is studied. We observe a flip bifurcation from a stable fixed point to a stable period-2 orbit which is followed by a Hopf bifurcation, quasiperiodic behaviour and periodic orbits. At the end of the route the iteration scheme tends to a fascinating strange attractor looking like the Eiffel tower.


Hopf Bifurcation Strange Attractor Iteration Scheme Characteristic Exponent Stable Fixed Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Beau, W., W. Metzler and A. Überla: The Route to Chaos of Two Coupled Logistic Maps. Preprint (1986).Google Scholar
  2. [2]
    Beau, W., W.H. Hehl, W. Metzler: Computerbilder zur Analyse chaoserzeugender Abbildungen. Informatik Forsch. Entw. 2 (1987), 122–130.Google Scholar
  3. [3]
    Collet, P. and J.-P. Eckmann: Iterated Maps on the Interval as Dynamical Systems. A. Jaffe and D. Ruelle (eds.). Birkhäuser, Basel/Boston/Stuttgart 1980.Google Scholar
  4. [4]
    Cvitanovic, P. (ed.): Universality in Chaos. Adam Hilger Ltd., Bristol 1983.Google Scholar
  5. [5]
    Feigenbaum, M.: The Universal Metric Properties of Nonlinear Transformations. J. Stat. Phys. 21 (1979), 669–706.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Feit, S.D.: Characteristic Exponents and Strange Attractors. Commun, math. Phys. 61 (1978), 249.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Guckenheimer, J., P. Holmes: Nonlinear Oscillations, Dynamical Systems and Birfurcations of Vector Fields. Springer, New York/Berlin/Heidelberg/Tokyo 19862.Google Scholar
  8. [8]
    Haken, H. (ed.): Evolution of Order and Chaos in Physics, Chemistry, and Biology. Springer, Berlin 1982.MATHGoogle Scholar
  9. [9]
    Hogg, T. and B.A. Huberman: Generic Behavior of Coupled Oscillators, Phys. Rev. A 29 (1984), 275.MathSciNetGoogle Scholar
  10. [10]
    Kaneko, K.: Transition from Torus to Chaos Accompanied by Frequency Lockings with Symmetry Breaking. Prog. Theor. Phys. 69 (1983), 1427.MATHCrossRefGoogle Scholar
  11. [11]
    Li, T.Y. and J.A. Yorke: Period Three Implies Chaos. Amer. Math. Monthly (1975), 958–992.Google Scholar
  12. [12]
    Mandelbrot, M.S.: The Fractal Geometry of Nature. Freeman, San Francisco 1982.MATHGoogle Scholar
  13. [13]
    May, R.B.: Simple Mathematical Models with very Complicated Dynamics. Nature 261 (1976), 459–467.CrossRefGoogle Scholar
  14. [14]
    Metzler, W., W. Beau, W. Frees, A. Überla: Symmetry and Self-similarity with Coupled Logistic Maps. Z. Naturforsch. 42a (1987), 310–318.Google Scholar
  15. [15]
    Metzler, W.: Chaos und Fraktale bei zwei gekoppelten nichtlinearen Modelloszillatoren. PdN Physik 7/36 (1987), 23–29.Google Scholar
  16. [16]
    Metzler, W., W. Beau, A. Überla: A Route to Chaos. Computergraphics Film. Inst. f.d. Wiss. Film, C 1641, Göttingen 1987.Google Scholar
  17. [17]
    Peitgen, H.O., P.H. Richter: The Beauty of Fractals. Springer, Berlin/Heidelberg/New York/Tokyo 1986.MATHCrossRefGoogle Scholar
  18. [18]
    Waller, H. and Kapral, R.: Spatial and Temporal Structure in Systems of Coupled Nonlinear Oscillators. Phys. Rev. A 30 (1984), 2047.Google Scholar

Copyright information

© Akademie-Verlag Berlin 1988

Authors and Affiliations

  • Wolfgang Metzler
    • 1
  1. 1.Department of MathematicsUniversity of KasselKasselGermany

Personalised recommendations