On Computational Solution of Differential Equations with Delay

  • P. S. Szczepaniak
  • A. Małolepszy
Conference paper
Part of the Advances in Simulation book series (ADVS.SIMULATION, volume 1)


A computational method of solving nonlinear differential-difference equations is described. In the method, the initial function is determined approximately with the use of the orthogonal series expansion technique and the final problem is in the form of a sequence of initial value problems for ordinary differential equations. A numerical example is given to illustrate accuracy of the method.


Ordinary Differential Equation Orthogonal Polynomial Legendre Polynomial Initial Function Functional Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bellman R.: On the computational solution of differential-differen-ce equations. J.Math.Anal.Appl.,2 (1961),108–110MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Bellman R., Cooke K.L.: Differential-difference equations. Academic Press, New York, London 1963MATHGoogle Scholar
  3. [3]
    Bellman R., Cooke K.L.: On the computational solution of a class of functional differential equations. J.Math.Anal.Appl., 12 (1965),495–500MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Bellman R., Kotkin B.: On the numerical solution of a differential—difference equations arising in analytic number theory. Math.Comp. 16(1962),473–475MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Cryer C.W.: Numerical methods for functional differential equations. In: Klaus Schmitt editor: Delay and functional differential equations and their applications. Academic Press, New York and London 1972, 17–101Google Scholar
  6. [6]
    Elsgolc L.E.: Prihližonnye metody integrirovanija differencjalno-raznostnych uravnenij. Uspechi mat.nauk, 8(1953)4, 81–93MathSciNetGoogle Scholar
  7. [7]
    Elsgolc L.E., Norkin S.B.: Vvedenije v teoriju differencealnych uravnenij s otklaniajuščimsa argumentum. Nauka, Moskva 1971Google Scholar
  8. [8]
    Jackson D.: Fourier series and orthogonal polynomials. Mathematical Association of America, 1941Google Scholar
  9. [9]
    Kaczmarz S., Steinhaus H.: Theorie der Orthogonalreihen. Fundusz Kultury Narodowej, Warszawa-Lwów 1935Google Scholar
  10. [10]
    Reeve P.J.: A method of approximating to pure time delay. Int.J. Control, 8 (1968)1, 53–63MATHCrossRefGoogle Scholar
  11. [11]
    Sansone G.: Orthogonal functions. Interscience, New York 1959MATHGoogle Scholar
  12. [12]
    Szczepaniak P.S., Szczepański J.: A method using orthogonal functions for analysis of delayed-differential systems. In: Proc.of the 5th Int.Symp.“System-Modelling-Control”. Zakopane, Poland, 1986, vol.2, 175–180Google Scholar
  13. [13]
    Szego G.: Orthogonal polynomials. American Mathematical Society, New York 1939Google Scholar

Copyright information

© Akademie-Verlag Berlin 1988

Authors and Affiliations

  • P. S. Szczepaniak
    • 1
  • A. Małolepszy
    • 1
  1. 1.Dept of Technical Physics and Applied Mathematics /I-1/Technical University of ŁódźŁϳdźPoland

Personalised recommendations