Remarks on Pole Assignment by Constant Output Feedback

  • Edward Jezierski
Conference paper
Part of the Advances in Simulation book series (ADVS.SIMULATION, volume 1)


Consider the linear dynamical system described by the equations
$${\rm{\dot x}}\left( {\rm{t}} \right){\rm{ = Ax}}\left( {\rm{t}} \right){\rm{ + Bu}}\left( {\rm{t}} \right)$$
$${\rm{y}}\left( {\rm{t}} \right) = {\rm{Cx}}\left( {\rm{t}} \right)$$
where \({\rm{x}}\left( {\rm{t}} \right) \in {{\rm{R}}^{\rm{n}}},{\rm{u}}\left( {\rm{t}} \right) \in {{\rm{R}}^{\rm{m}}},\,{\rm{y}}\left( {\rm{t}} \right) \in {{\rm{R}}^{\rm{r}}}\) and A,B,C are constant matrices of appropriate dimensions. The Wonham’s result states that if the system is controllable then it is also pole-assignable using a constant state feedback. Unfortunately, in practical situations usually the state vector is not accessible but only the output vector. In that case the problem of pole assignment consists in finding the constant output feedback
$${\rm{u}}\left( {\rm{t}} \right){\rm{ = Ky}}\left( {{\rm{\dot t}}} \right)$$
to assign the prespecified location of the closed-loop system poles
$$\sigma \left( {{\rm{A + BKC}}} \right) = \left( {{{\hat \lambda }_1},{{\hat \lambda }_2}, \ldots ,{{\hat \lambda }_{\rm{n}}}} \right)$$
which are real valued or complex valued in conjugate pairs.


Output Feedback Linear Dynamical System Pole Placement Root Locus Pole Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Brockett R.W., Byrnes Ch.,.: Multivariable Nyquist criteria, root loci, and pole placement: a geometric viewpoint. IEEE Trans. Autom. Control AC-26 (1981) 1, 271–283.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Fletcher L. R.: Exact pole assignment by output feedback — part 2. Int. J. Control 45 (1987)6, 2009–2019.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Fletcher L.R., Magni J. F.: Exact pole assignment by output feedback-part 1. Int. J. Control 45(1987)6, 1995–2007.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Hermann R., Martin C.: Applications of algebraic geometry to systems theory — part 1. IEEE Trans. Autom. Control AC-22(1977)1, 19–25.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Jezierski E., Kuzminski K.: New results in modal control synthesis. Systems Science 7(1981)1, 42–54.MATHGoogle Scholar
  6. [6]
    Jezierski E., Kulminski K.: Comments on relations between coefficients of the closed-loop characteristic polynomial and output feedback gains. Int. J. Control 46(1987)4, 1487–1489.MATHCrossRefGoogle Scholar
  7. [7]
    Kimura H.: Pole assignment by gain output feedback. IEEE Trans. Autom. Control. AC-20(1975)4, 509–516.CrossRefGoogle Scholar
  8. [8]
    Magni J.F.: Exact pole assignment by output feedback-part 3. Int. J. Control 45(1987)6, 2021–2033.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Morse A.S., Wolovich W.A., Anderson B. D. Q.: Generic pole assignment: preliminary results. IEEE Trans. Autom. Control AC-28 (1983)4, 503–506.MathSciNetCrossRefGoogle Scholar

Copyright information

© Akademie-Verlag Berlin 1988

Authors and Affiliations

  • Edward Jezierski
    • 1
  1. 1.Technical University of ŁódźŁódźPoland

Personalised recommendations