Advertisement

Abstract

Scaling and measurement are usually based on numerical methods; this is, for instance, indicated by Stevens’ definition: “measurement is the assignment of numerals to objects or events according to rules” (see [15], p. 22), or by Torgerson’s statement: “measurement of a property involves the assignment of numbers to systems to represent that property” (see [16], p. 14). In contrast to this, conceptual scaling uses first of all set-theoretical methods to explore conceptual patterns in empirical data. Conceptual scaling has been developed in the frame of formal concept analysis, a theory based on a mathematization of conceptual hierarchies (see [18]). In this paper we give an introductory survey on conceptual scaling which concentrates on scales of ordinal type. First we recall basic notions and results of formal concept analysis and demonstrate them by an example (section 2). Then ideas of conceptual measurement are discussed in focussing on the question of measurability by standardized scales of ordinal type (section 3 and 4). These ideas are applied to the scaling of data contexts to derive conceptual hierarchies for the data (section 5). Finally, these scalings are used to introduce and to study a general notion of dependency between attributes which covers special notions like functional and linear dependency (section 6). Mathematically we presuppose some basic knowledge of order and lattice theory which can be found in [1] and [6].

Keywords

Scale Measure Ordinal Scale Concept Lattice Formal Context Formal Concept Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Birkhoff: Lattice theory. Third edition. Amer. Math. Soc, Providence/R. I. 1967.MATHGoogle Scholar
  2. [2]
    S. Brand (ed.): The next Whole Earth Catalogue. Random House, 1980.Google Scholar
  3. [3]
    P. Burmeister: Programm zur Formalen Begriffsanalyse einwertiger Kontexte. TH Darmstadt 1987.Google Scholar
  4. [4]
    V. Duquenne: Contextual implications between attributes and some properties of finite lattices. In: B. Ganter, R. Wille, K.-E. Wolff (eds.): Beiträge zur Begriffsanalyse. B.I.-Wissenschaftsverlag, Mannheim/Wien/Zürich 1987, 213 – 239.Google Scholar
  5. [5]
    V. Duquenne, J.-L. Guigues: Familles minimales d’implications informatives resultant d’un tableau de données binaires. Math. Sci. Hum. 95(1986), 5 – 18.MathSciNetGoogle Scholar
  6. [6]
    M. Erné: Einführung in die Ordnungstheorie. B.I.- Wissenschaftsverlag, Mannheim/Wien/Zürich 1982.MATHGoogle Scholar
  7. [7]
    B. Ganter: Algorithmen zur Formalen Begriffsanalyse. In: B. Ganter, R. Wille, K.-E. Wolff (eds.): Beiträge zur Begriffsanalyse. B.I.-Wissenschaftsverlag, Mannheim/Wien/Zürich 1987, 241 – 254.Google Scholar
  8. [8]
    B. Ganter: Programmbibliothek zur Formalen Begriffsanalyse. TH Darmstadt 1987.Google Scholar
  9. [9]
    B. Ganter, J. Stahl, R. Wille: Conceptual measurement and many-valued contexts. In: W. Gaul, M. Schader (eds.): Classification as a tool of research. North-Holland, Amsterdam 1986, 169 – 176.Google Scholar
  10. [10]
    B. Ganter, R. Wille: Implikationen und Abhängigkeiten zwischen Merkmalen. In: P.O. Degens, H-J. Hermes, O. Opitz (eds.): Die Klassifikation und ihr Umfeld. INDEKS Verlag Frankfurt 1986, 171 – 185.Google Scholar
  11. [11]
    G. Gigerenzer: Repertory-Test. In: H. Bruhn, R. Oerter, H. Rösing (eds.): Musikpsychologie. Urban & Schwarzenberg, München-Wien-Baltimore 1985, 524 – 529.Google Scholar
  12. [12]
    D. Maier: The theory of relational databases. Computer Science Press, Rockville 1983.MATHGoogle Scholar
  13. [13]
    F. S. Roberts: Measurement theory. Addison-Wesley, Reading/Mass. 1979.MATHGoogle Scholar
  14. [14]
    M. Skorsky: Handbuch für Benutzer und Programmierer des Programmpaketes ANACONDA. TH Darmstadt, 1986.Google Scholar
  15. [15]
    S. S. Stevens: Mathematics, measurement, and psychophysics. In: S. S. Stevens (ed.): Handbook of experimental psychology. Wiley, New York 1951.Google Scholar
  16. [16]
    W. S. Torgerson: Theory and methods of scaling. Wiley, New York 1958.Google Scholar
  17. [17]
    H. Wagner: Begriff. In: Handbuch philosophischer Grundbegriffe. Kösel, München 1973, 191 – 209.Google Scholar
  18. [18]
    R. Wille: Restructuring lattice theory: an approach based on hierarchies of concepts. In: I. Rival (ed.): Ordered sets. Reidel, Dordrecht — Boston 1982, 445 – 470.Google Scholar
  19. [19]
    R. Wille: Liniendiagramme hierarchischer Begriffssysteme. In: H. H. Bock (ed.): Anwendungen der Klassifikation: Datenanalyse und numerische Klassifikation. INDEKS Verlag Frankfurt 1984, 32–51; engl. translation: Line diagrams of hierarchical concept systems. International Classification 11 (1984), 77 – 86.Google Scholar
  20. [20]
    R. Wille: Tensorial decompositions of concept lattices. Order 2 (1985), 81 – 95.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    R. Wille: Dependencies of many-valued attributes. In: H. H. Bock (ed.): Classification and related methods of data analysis. North-Holland, Amsterdam 1988, 581 – 586.Google Scholar
  22. [22]
    R. Wille: Lattices in data analysis: how to draw them with a computer. In: I. Rival (ed.): Algorithm and order. Reidel, Dordrecht — Boston (to appear).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Bernhard Ganter
    • 1
  • Rudolf Wille
    • 1
  1. 1.Technische Hochschule DarmstadtWest Germany

Personalised recommendations