In Vitro Developmental Toxicity Assays

  • K. S. Khera
  • H. C. Grice
  • D. J. Clegg
Part of the Current Issues in Toxicology book series (CI TOXICOLOGY)


The development and applications of in vitro systems for safety evaluation and environmental risk studies on chemicals (i.e., toxicity testing) have been, in large part, limited to the field of genetic toxicology. Recent advances in molecular and cellular differentiation have provided new insights into the mechanisms of embryonic development and new opportunities to analyze the causes and effects of teratogenic insult. For example, observations of the role of glucocorticoids (Pratt et al., 1984a, 1984b; Pratt, 1985), epidermal growth factor (Grove and Pratt, 1984), NAD (Midura et al., 1985), the composition of the extracellular matrix (Swalla and Solursh, 1984; Solursh et al., 1984), and the possible influence of secretory products of embryonic ectoderm cells on mesenchymal cell differentiation (Solursh, 1984b) have contributed to greater understanding of the factors controlling skeletal system morphogenesis. Investigations such as those using the nematode Caenorhabditis elegans (Sulston and Horvitz, 1977) have developed and extended the concept of cell lineages in the process of postembryonic growth. Mechanistic and morphologically based investigations of the types just described proceed apace. Their results suggest that mechanistic analyses, rather than traditional morphological studies of laboratory animals, may meet future prerequisites of testing for teratogenic potential.


Teratogenic Potential Cellular Retinoic Acid Binding Protein Frog Embryo Genetic Toxicology Nonmammalian Vertebrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bournias-Vardiabasis, N. and Flores, J. (1983) Drug metabolizing enzymes in Drosophila melanogaster: Teratogenicity of cyclophosphamide in vitro. Teratogenesis Carcinog. Mutagen. 3: 255–262.PubMedCrossRefGoogle Scholar
  2. Bournias-Vardiabasis, N. and Teplitz, R.L. (1982) Use of Drosophila embryo cell cultures as an in vitro teratogen assay. Teratogenesis Carcinog. Mutagen. 2: 333–341.PubMedCrossRefGoogle Scholar
  3. Braun, A.G., Buckner, C.A., Emerson, D.J., and Nichinson, B.B. (1982) Quantitative correspondence between the in vivo and in vitro activity of teratogenic agents. Proc. Natl. Acad. Sci. U.S.A. 79: 2056–2060.PubMedCrossRefGoogle Scholar
  4. Braun, A.G., Emerson, D.J., and Nichinson, B.B. (1979) Teratogenic drugs inhibit tumour cell attachment to lectin-coated surfaces. Nature 282: 507–509.PubMedCrossRefGoogle Scholar
  5. Braun, A.G. and Horowicz, P.B. (1983) Lectin-mediated attachment assay for teratogens: Results with 32 pesticides. J. Toxicol. Environ. Health 11: 275–286.CrossRefGoogle Scholar
  6. Braun, A.G. and Weinreb, S.L. (1984) Teratogen metabolism: Activation of thalidomide and thalidomide analogues to products that inhibit the attachment of cells to concanavalin A coated plastic surfaces. Biochem. Pharmacol. 33: 1471–1477.PubMedCrossRefGoogle Scholar
  7. Braun, A.G. and Weinreb, S.L. (1985) Teratogen metabolism: Spontaneous decay products of thalidomide and thalidomide analogues are not bioactivated by liver microsomes. Teratogenesis Carcinog. Mutagen. 5: 149–158.PubMedCrossRefGoogle Scholar
  8. Buzin, C.H. and Bournias-Vardiabasis, N. (1984) Teratogens induce a subset of small heat shock proteins in Drosophila primary embryonic cell cultures. Proc. Natl. Acad. Sci. U.S.A. 81: 4075–4079.PubMedCrossRefGoogle Scholar
  9. Campbell, M.A., Brown, K.S., Hassell, J.R., Horigan, E.A., and Keeler, R.F. (1985) Inhibition of limb chondrogenesis by a Veratrum alkaloid: Temporal specificity in vivo and in vitro. Dey. Biol. 111: 464–470.CrossRefGoogle Scholar
  10. Caplan, A.I. (1972) Effects of a nicotinamide-sensitive teratogen 6-aminonicotinamide on chick limb cells in culture. Exp. Cell Res. 70: 185–195.PubMedCrossRefGoogle Scholar
  11. Dumont, J.N., Schultz, T.W. Buchanan, M., and Kao, G. (1983) Frog embryo teratogenesis assay: Xenopus (FETAX)—A short-term assay applicable to complex environmental mixtures.In Symposium on the Application of Short-Term Bioassays in the Analysis of Complex Environmental Mixtures, III (M.D. Waters, S.S. Sandhu, J. Lewtas, L. Claxton, and S. Nesnow, Eds.), pp. 393–405, Plenum Press, New York.Google Scholar
  12. Ellington, S.K. and New, D.A. (1980) In vitro development of the rat parietal yolk sac. J. Reprod. Fertil. 60: 377–382.PubMedCrossRefGoogle Scholar
  13. Flint, O.P., Orton, T.C., and Ferguson, R.A. (1984) Differentation of rat embryo cells in culture: Response following acute maternal exposure to teratogens and non-teratogens. J. Appl. Toxicol. 4: 109–116.PubMedCrossRefGoogle Scholar
  14. Grove, R.I. and Pratt, R.M. (1984) Influence of epidermal growth factor and cyclic AMP on growth and differentiation of palatal epithelial cells in culture. Dey. Biol. 106: 427–437.CrossRefGoogle Scholar
  15. Guntakatta, M., Matthews, E.J. and Rundell, J.O. (1984) Development of a mouse embryo limb bud cell culture system for the estimation of chemical teratogenic potential. Teratogenesis Carcinog. Mutagen. 4: 349–364.PubMedCrossRefGoogle Scholar
  16. Hattori, T. and Ide, H. (1984) Limb bud chondrogenesis in cell culture, with particular reference to serum concentration in the culture medium. Exp. Cell Res. 150: 338–346.PubMedCrossRefGoogle Scholar
  17. Homburger, F. and Golberg, A.M. (1985) In Vitro Embryotoxicity and Teratogenicity Tests, S. Karger, Basel.Google Scholar
  18. Johnson, E.M., Gabel, B.E., and Larson, J. (1984) Developmental toxicity and structure/activity correlates of glycols and glycol ethers. Environ. Health Perspect. 57: 135–139.PubMedCrossRefGoogle Scholar
  19. Johnson, E.M., Gorman, R. M., Gabel, B.E.G., and George, M.E. (1982) The Hydra attenuata system for detection of teratogenic hazards. Teratogenesis Carcinog. Mutagen. 2: 263–276.Google Scholar
  20. Karp, G.C. and Solursh, M. (1985) In vitro fusion and separation of sea urchin primary mesenchyme cells. Exp. Cell Res. 158: 554–557.PubMedCrossRefGoogle Scholar
  21. Kim, C.S., Lauder, J.M., Joh, T. H., and Pratt, R.M. (1984) Immunocytochemical localization of glucocorticoid receptors in midgestation murine embryos and human embryonic cultured cells. J. Histochem. Cytochem. 32: 1234–1237.PubMedCrossRefGoogle Scholar
  22. Kimmel, G.L. (1985) In vitro tests in screening teratogens: Considerations to aid the validation process. Prog. Clin. Biol. Res. 163C: 259–263.Google Scholar
  23. Kimmel, G.L., Smith, K., Kochhar, D.M., and Pratt, R.M. (1982) Overview of in vitro teratogenicity testing: Aspects of validation and application to screening. Teratogenesis Carcinog. Mutagen. 2: 221–229.PubMedCrossRefGoogle Scholar
  24. Knudsen, T.B., Elmer, W.A., and Kochhar, D.M. (1985) Elevated rate of DNA synthesis and its correlation to cAMP- phosphodiesterase activity during induction of polydactyly in mouse embryos heterozygous for Hemimelia-exta toe ( Hmx ). Teratology 31: 155–166.PubMedCrossRefGoogle Scholar
  25. Kochhar, D.M. (1985) Cellular expression of a mutant gene (cmd/cmd) causing limb and other defects in mouse embryos. Prog. Clin. Biol. Res. 163C: 131–144.Google Scholar
  26. Kochhar, D.M. (1975) The use of in vitro procedures in teratology. Teratology 11: 273–287.PubMedCrossRefGoogle Scholar
  27. Kwarta, R.F., Jr., Kimmel, C.A., Kimmel, G.L., and Slikker, W., Jr. (1985) Identification of the cellular retinoic acid binding protein (cRABP) within the embryonic mouse (CD-1) limb bud. Teratology 32: 103–111.PubMedCrossRefGoogle Scholar
  28. Midura, R.J., Chemey, B.W., and Caplan, A.I. (1985) The relationship of nicotinamide adenine dinucleotide to the chondrogenic differentiation of limb mesenchymal cells. Dev. Biol. 111: 232–242.PubMedCrossRefGoogle Scholar
  29. Pratt, R.M. (1985) Receptor-dependent mechanisms of glucocorticoid and dioxin-induced cleft palate. Environ. Health Perspect. 61: 35–40.PubMedCrossRefGoogle Scholar
  30. Pratt, R.M., Kim, C.S., and Grove, R.I. (1984a) Role of glucocorticoids and epidermal growth factor in normal and abnormal palatal development. Curr. Top. Dev. Biol. 19: 81–101.PubMedCrossRefGoogle Scholar
  31. Pratt, R.M., Perry, E.L., Chapman L.M., and Goulding, E.H. (1984b) Glucocorticoid teratogenesis in mouse whole embryo culture. Teratology 30: 71–81.PubMedCrossRefGoogle Scholar
  32. Pratt, R.M. and Willis, W.D. (1985) In vitro screening assay for teratogens using growth inhibition of human embryonic cells. Proc. Natl. Acad. Sci. USA 82: 5791–5794.PubMedCrossRefGoogle Scholar
  33. Purchase, I. and Conning, D. (1986) International conference on in vitro toxicology. Food Chem Toxicol. 24: 601–656.CrossRefGoogle Scholar
  34. Royal, P.D., Sparks, K.J. and Goetinck, P.F. (1980) Physical and immunochemical characterization of proteoglycans synthesized during chondrogenesis in the chick embryo. J. Biol. Chem. 255: 9870–9878.PubMedGoogle Scholar
  35. Sadler, T.W. and New, D.A. (1981) Culture of mouse embryos during neurulation. J. Embryol. Exp. Morphol. 66: 109–116.Google Scholar
  36. Satish, J., Pratt, B.M., and Sanyal, M.K. (1985) Differential dysmorphogenesis induced by microinjection of an alkylating agent into rat conceptuses cultured in vitro. Teratology 31: 61–72.PubMedCrossRefGoogle Scholar
  37. Schultz, T.W., Dumont, J.N., and Epler, R.G. (1985) The embryotoxic and osteolathyrogenic effects of semicarbazide. Toxicology 36: 183–198.PubMedCrossRefGoogle Scholar
  38. Shepard, T.H. (1980) Catalog of Teratogenic Agents, 3rd ed., Johns Hopkins University Press, Baltimore.Google Scholar
  39. Solursh, M. (1984a) Ectoderm as a determinant of early tissue pattern in the limb bud. Cell Differ. 15: 17–24.PubMedCrossRefGoogle Scholar
  40. Solursh, M. (1984b) The migratory capacity of myogenic cells in vitro. Dev. Biol. 102: 509–513.PubMedCrossRefGoogle Scholar
  41. Solursh, M., Jensen, K.L., Zanetti, N.C., Linsenmayer, T.F., and Reiter, R.S. (1984) Extracellu- lar matrix mediates epithelial effects on chondrogeneais in vitro. Dev. Biol. 105: 451–457.PubMedCrossRefGoogle Scholar
  42. Steele, C.E., New, D.A.T., Ashford, A., and Copping, G.P. (1983a) Teratogenic action of hypolipidemic agents: An in vitro study with postimplantation rat embryos. Teratology 28: 229–236.PubMedCrossRefGoogle Scholar
  43. Steele, C.E., Trasler, D.G., and New, D.A.T. (1983b) An in vivo/in vitro evaluation of the teratogenic action of excess vitamin A. Teratology 28: 209–214.PubMedCrossRefGoogle Scholar
  44. Sulston, J.E. and Horvitz, H.R. (1977) Post-embryonic cell lineages of the nematode Caenorhabditis elegans. Dey. Biol. 56: 110–156.CrossRefGoogle Scholar
  45. Swalla, B.J. and Solursh, M. (1984) Inhibition of limb chondrogenesis by fibronectin. Differentiation 26: 42–48.PubMedCrossRefGoogle Scholar
  46. Wilk, A.L., Greenberg, J.H., Horigan, E.A., Pratt, R.M., and Martin, G.R. (1980) Detection of teratogenic compounds using differentiating embryonic cells in culture. In Vitro 16: 269–276.Google Scholar
  47. Wilson, J. (1978) Handbook of Teratology, vol. 4, Research Procedures and Data Analysis, Plenum Press, New York.Google Scholar
  48. Yoneda, T. and Pratt, R.M. (1981) Mesenchymal cells from the human embryonic palate are highly responsive to epidermal growth factor. Science 213: 563–565.PubMedCrossRefGoogle Scholar
  49. Zanetti, N.C. and Solursh, M. (1984) Induction of chondrogenesis in limb mesenchymal cultures by disruption of the actin cytoskeleton. J. Cell Biol. 99: 115–123.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • K. S. Khera
    • 1
  • H. C. Grice
    • 2
  • D. J. Clegg
    • 1
  1. 1.Health Protection BranchHealth and Welfare CanadaOttawaCanada
  2. 2.NepeanCanada

Personalised recommendations