Advertisement

Cell-Mediated Immunity

  • Giovanna Tosato
Part of the Clinical Topics in Infectious Disease book series (CLIN.TOP.INFECT)

Abstract

One of the most distinctive features of infectious mononucleosis is the striking involvement of the immune system. Patients with infectious mononucleosis present with enlarged lymph nodes, tonsils, and spleen, and analysis of their peripheral blood generally reveals a prominent T-cell lymphocytosis (Hoagland 1952; Sheldon et al. 1973; Pattengale 1974b; Rapp and Hewetson, 1978; Reinherz, 1980; De Waele, 1981; Tomkinson, 1987). In addition, serum immunoglobulins are generally markedly elevated (Wollheim and Williams 1966; Sutton 1973).

Keywords

Infectious Mononucleosis Immortal Cell Line Leukocyte Migration Inhibition Acute Infectious Mononucleosis Tious Mononucleosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aman, P., Ehlin-Henriksson, B., and Klein, G. (1984). Epstein-Barr virus susceptibility of normal human B lymphocyte populations. J. Exp. Med. 159:208–220.PubMedCrossRefGoogle Scholar
  2. Bakacs, T., Svedmyr, E., and Klein, E. (1978). EBV- related cytotoxicity of Fc-receptor negative T lymphocytes separated from the blood of infectious mononucleosis patients. Cancer Lett. 4:185–189.PubMedCrossRefGoogle Scholar
  3. Bentzon, J.W. (1953). The effect of certain infectious diseases on tuberculin allergy. Tubercle 34:34.PubMedCrossRefGoogle Scholar
  4. Bird, A.G., and Britton, S. (1979). A live human B cell activator operating in isolation of other cellular influences. Scand. J. Immunol 9:507.PubMedCrossRefGoogle Scholar
  5. Bird A.G., Britton S. (1979b). A new approach to the study of human B lymphocyte function using an indirect plague assay and a direct B cell activator. Immunology. Rev. 45:41–47.CrossRefGoogle Scholar
  6. Blazar, B., Patorroyo, M., Klein, E, and Klein, G. (1981). Increased sensitivity of human lymphoid lines to natural killer cells after induction of the Epstein-Barr virus cycle by superinfection or sodium butyrate. J. Exp. Med. 151:614–627.CrossRefGoogle Scholar
  7. Brown, N.A., Liu, C., Garcia, C.R., Wang, Y-F., Griffith, A., Sparkes, R.S., and Calame, K.L. (1986). Clonal origins of lymphoproliferative disease induced by Epstein-Barr virus.J. Virol. 58:975–978.PubMedGoogle Scholar
  8. Brown, N., Smith, D., Miller, G., Niederman, C., Liu, C., and Robinson, J. (1984). Infectious mononucleosis: A polyclonal B cell transformationin vivo. J. Infect. Dis. 150:517–522.PubMedCrossRefGoogle Scholar
  9. Caline R.Y., Rolles, K., Thiru S., McMaster, P., Craddock, G.N., Aziz, S., White, D.J.G., Evans, D. B., Dunn, D.C., Henderson R.G., and Lewis, P., (1979). Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers.Lancet 2:1033–1036.CrossRefGoogle Scholar
  10. Carter, R.L. (1975). Infectious mononucleosis: Model for self-limiting lymphoproliferation. Lancet i:846–849.CrossRefGoogle Scholar
  11. Chan, M.A., Stein, L.D., Dasch, H., and Sigal N.H. (1986). Heterogeneity of EBV-transformable human B lymphocyte populations. J. Immunol. 136:106–112.PubMedGoogle Scholar
  12. Chan, S.H., Wallen, W.C., Levine, P.H., Periman, P., and Perlin, E. (1977). Lymphocyte responses to EBV-associated antigens in infectious mononucleosis, and Hodgkin’s and non-Hodgkin’s patients, with the leukocyte adherence inhibition assay. Int. J. Cancer 19:356–363.PubMedCrossRefGoogle Scholar
  13. Crawford, D.H., Brickell, P., Tidman, N., and McConnel, I. (1981). Increased numbers of cells with suppressor T cell phenotype in the peripheral blood of patients with infectious mononucleosis. Clin. Exp. Immunol. 43:291.PubMedGoogle Scholar
  14. Crawford, D.H., Rickinson, A.B., Finerty, S., and Epstein, M.A. (1978). Epstein-Barr (EB) virus ge- nome-containing, EB nuclear antigen-negative B- lymphocyte populations in blood in acute infectious mononucleosis. J. Gen. Virol. 38:449–460.PubMedCrossRefGoogle Scholar
  15. DeWaele, M., Thielemans, C., and Van Camp, B.K.G. (1981). Characterization of immunoregula- tory T cells in EBV-induced infectious mononucleosis by monoclonal antibodies. N. Engl. J. Med. 304:460.CrossRefGoogle Scholar
  16. Diehl, V.G., Henle, G., Henle, W., and Kohn, G. (1968). Demonstration of a herpes group virus in cultures of peripheral leukocytes from patients with infectious mononucleosis. J. Virol. 2:663.PubMedGoogle Scholar
  17. Downey, H., and McKinlay, C.A. (1923). Acute lymphadenosis compared with acute lymphatic leukemia. Arch. Intern. Med. 32:82.CrossRefGoogle Scholar
  18. Einhorn, L., and Emberg, I. (1978). Induction of EBNA precedes stimulation of DNA synthesis in EBV infected human lymphocytes. Int. J. Cancer 21:157.PubMedCrossRefGoogle Scholar
  19. Enberg, R.N., Eberle, B.J., and Williams, R.C. (1974). T and B cells in the peripheral blood during infectious mononucleosis.J. Infect. Dis. 130:104.PubMedCrossRefGoogle Scholar
  20. Epstein, M.A., and Achong, B.G. (1977). Pathogenesis of infectious mononucleosis.Lancet 2:1270.PubMedCrossRefGoogle Scholar
  21. Epstein, M.A., Hunt, R.D., and Rabin, H. (1973). Pilot experiments with EB virus in owl monkey (Aotus trivirgatus) I. Reticuloproliferative disease in an inoculated animal. Int. J. Cancer 12:309–318.PubMedCrossRefGoogle Scholar
  22. Fingeroth, J.D., Weis, J.J., Tedder, T.F., Strominger, J.L., Biro, P.A., and Fearon, D.T. (1984). Epstein- Barr virus receptor of human B lymphocyte is the C3d receptor CR2. Proc. Natl. Acad. Sci. (USA) 81:4510–4514.CrossRefGoogle Scholar
  23. Frade, R., Barel, M., Ehlin-Hendrikkson, B., and Klein, G. (1985). Gpl40, the C3d receptor of human B lymphocytes, is also the Epstein-Barr virus receptor. Proc. Natl. Acad. Sci (USA) 82:1490–1493.CrossRefGoogle Scholar
  24. Fu, S.M., Hurley, J.N., McCune J.M., Kunkel, H.G., and Good, R.A. (1980). Pre-B cells and other possible precursor lymphoid cell lines derived from patients with X-linked agammaglobulinaemia. J. Exp. Med 152:1519–1526.PubMedCrossRefGoogle Scholar
  25. Gerber, P., and Hoyer, B.H. (1971). Induction of cellular DNA synthesis in human leukocytes by Epstein-Barr virus. Nature 231:46.PubMedCrossRefGoogle Scholar
  26. Gerber, P., Lucas, S., Nonomoya, M., Perlin, E., and Goldstein, L.I. (1972). Oral excretion of Epstein-Barr virus by healthy subjects and patients with infectious mononucleosis. Lancet 2:988.PubMedCrossRefGoogle Scholar
  27. Gerber, P., Whang-Peng, J., and Monroe, J.H. (1969). Transformation and chromosome changes induced by Epstein-Barr virus in normal human lymphocyte cultures. Proc. Natl. Acad. Sci. (USA) 63:740–747.CrossRefGoogle Scholar
  28. Gergely, P., Emberg, I., Klein, G., and Stinitiz, M. (1977). Blastogenic response of purified human T- lymphocyte populations to Epstein-Barr virus (EBV). Clin. Exp. Immunol. 30:347–353.PubMedGoogle Scholar
  29. Golden, H.D., Chang, R.S., Prescott, W., Simpson, E., and Cooper, T.Y. (1973). Leukocyte transforming agent: Prolonged excretion by patients with mononucleosis and excretion by normal individuals.J. Infect. Dis. 127:471.PubMedCrossRefGoogle Scholar
  30. Gordon, J., Guy, G., and Walker, L. (1986). Autocrine models of B lymphocyte growth. Interleukin 1 supports the proliferation of transformed lymphoblasts but not the stimulation of resting B cells triggered through their receptor for antigens. Immunology 57:419.PubMedGoogle Scholar
  31. Gordon, J., Ley, S.C., Melamed, M.D., Aman, P., and Hughes-Jones, N.C. (1984a). Soluble factor requirements for the autostimulatory growth of B lymphoblasts immortalized by Epstein-Barr virus. J. Exp. Med. 159:1554–1559.PubMedCrossRefGoogle Scholar
  32. Gordon, J., Ley, S.C., Melamed, M.D. English, L.S., and Hughes-Jones, N.C. (1984b). Immortalized B lymphocytes produce B cell growth factor.Nature 310:145–147.PubMedCrossRefGoogle Scholar
  33. Greaves, M.F., Brown, G., and Rickinson, A.B. (1975). Epstein-Barr virus binding sites in lymphocyte subpopulations and the origin of lymphoblasts in cultured lymphoid cell lines and in the blood of patients with infectious mononucleosis. Clin. Immunol. Immunopathol. 3:514.PubMedCrossRefGoogle Scholar
  34. Haider, S., Cautinho, M.D., and Edmond, R.T.D. (173). Tuberculin anergy and infectious mononucleosis.Lancet 2:74.Google Scholar
  35. Hansson, M., Falk, K., and Emberg I. (1983). Epstein-Barr virus transformation of human pre-B cells. J. Exp. Med. 158:616–622.PubMedCrossRefGoogle Scholar
  36. Hanto, D.W., Frizzera, G., Purtilo, D.T., Sakamoto, K., Sullivan, J.L. Saemundsen, A.K., Klein, G., Simmons, R.L., and Najarian, J.S. (1981). Clinical spectrum of lymphoproliferative disorders in renal transplant recipients and evidence for the role of Epstein-Barr virus. Cancer Res. 41:4253–4261.PubMedGoogle Scholar
  37. Haynes, B.F., Schooley, R.T., Payling-Wright, C.R., Crouse, J.E., Dolin, R., and Fauci, A.S. (1979). Emergence of suppressor cells of immunoglobulin synthesis during acute Epstein-Barr virus-induced infectious mononucleosis.J. Immunol. 123:2095.PubMedGoogle Scholar
  38. Henderson, E., Miller, G., Robinson, J., and Heston, L. (1977). Efficiency of transformation of lymphocytes by Epstein-Barr virus. Virology 76:152–163.PubMedCrossRefGoogle Scholar
  39. Henle, W., Diehl, V., Kohn, G., zur Hausen, H., and Henle, G. (1967). Herpes type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt’s cell. Science 157:1054.CrossRefGoogle Scholar
  40. Hinuma, Y., and Katsuki, T. (1978). Colonies of EBNA-positive cells in soft agar from peripheral leukocytes of infectious mononucleosis patients. Int. J. Cancer 21:426–431.PubMedCrossRefGoogle Scholar
  41. Ho, M., Miller, G., Atchison, R.W., Breinig, M.K., Dummer, J.S., Andiman, W., Starzl, T.E., Eastman, R., Griffith, B.P., Hardesty, R.L., Bahnson, H.T., Hakala, T.R., and Rosenthal, J.T. (1985). Epstein-Barr virus infection and DNA hybridization studies in posttransplantation lymphoma and lymphoproliferative lesions: The role of primary infection. J. Infect. Dis. 152:876–886.PubMedCrossRefGoogle Scholar
  42. Hoagland, R.J. (1952). Infectious mononucleosis. Am. J. Med. 13:158.PubMedCrossRefGoogle Scholar
  43. Hütt, L.M., Huang, Y-T., Dascomb, H.E., and Pa- gano, J.S. (1975). Enhanced destruction of lymphoid cell lines by peripheral blood leukocytes taken from patients with acute infectious mononucleosis. J. Immunol. 115:243.PubMedGoogle Scholar
  44. lida, K., Nadler, L., and Nussenzweig, Y. (1983). Identification of the membrane receptor for the complement fragment C3d by means of a monoclonal antibody. J. Exp. Med 158:1021–1033.CrossRefGoogle Scholar
  45. Johnsen, H.E., Madsen, M., and Kristensen, T. (1979). Lymphocyte subpopulations in man: Suppression of PWM-induced B-cell proliferation by infectious mononucleosis T cells. Scand. J. Immunol. 10:251.PubMedCrossRefGoogle Scholar
  46. Jondal, M., and Klein, G. (1973). Surface markers on human B and T lymphocytes. II. Presence of Ep- stein-Barr virus receptors on B lymphocytes. J. Exp. Med 138:1365.PubMedCrossRefGoogle Scholar
  47. Jondal, M., and Targan, S. (1978). In vitro induction of cytotoxic effector cells with spontaneous killer activity. J. Exp. Med 147:1621–1636.PubMedCrossRefGoogle Scholar
  48. Katamine, S., Otsu, M., Tada, K., Tsuchiya, S., Sato, T., Ishida, N., Honjo, T., and Ono, Y. (1984). Epstein-Barr virus transforms precursor B cells even before immunoglobulin gene rearrangements. Nature 309:369–372.PubMedCrossRefGoogle Scholar
  49. Katsuki, T., Hinuma, Y., Saito, T., Yamamoto, Hirashima, Y., Sudoh, H., Deguchi, M., and Motokawa, M. (1979). Simultaneous presence of EBNA positive and colony-forming cells in peripheral blood of patients with infectious mononucleosis. Int. J. Cancer 23:132.CrossRefGoogle Scholar
  50. Kintner, C., and Sudgen, B. (1981). Identification of antigenic determinants unique to the surfaces of cells transformed by Epstein-Barr virus. Nature 294:458.PubMedCrossRefGoogle Scholar
  51. Kirchner, H., Tosato, G., Blaese, R.M., Broder, S., and Magrath, L.T. (1979). Polyclonal immunoglobulin secretion by human B lymphocytes exposed to Epstein-Barr virusin vitro. J. Immunol. 122:1310.PubMedGoogle Scholar
  52. Klein, E., Emberg, I., Masucci, M.G., Szigeti, R., Wu, Y.T., Masucci, G., and Svedmyr, E. (1981). T-cell response to B-cells and Epstein-Barr virus antigens in infectious mononucleosis. Cancer Res. 41: 4210–4215.PubMedGoogle Scholar
  53. Klein, E., Masucci, M.G., Berthold, W., and Blazar, B.A. (1980). Lymphocyte-mediated cytotoxicity towards virus-induced tumor cells; natural and activated killer lymphocytes in man. In Viruses in Naturally Occurring Cancers, M. Essex, G. Todaro, and H. zur Hausen (eds.). Cold Spring Harbor Conferences on Cell Proliferation, Cold Spring Laboratory, vol. 7, pp. 1187–1197.Google Scholar
  54. Klein, G. (1980). Immune and non-immune control of neoplastic development: Contrasting effect of host and tumor evolution. Cancer 45:2486–2499.PubMedCrossRefGoogle Scholar
  55. Klein, G., and Klein, E. (1984). The changing faces of EBV research. Prog. Med. Virol. 30:87–106.PubMedGoogle Scholar
  56. Klein, G., Svedmyr, E., Jondal, M., and Pearson, P.O. (1976). EBV-determined nuclear antigen (EBNA) positive cells on the peripheral blood of infectious mononucleosis patients. Int. J. Cancer 17:21.PubMedCrossRefGoogle Scholar
  57. Lai, P.K., Alpers, M.P., and MacKay-Scollay, E.M. (1977a). Development of cell-mediated immunity to Epstein-Barr herpesvirus in infectious mononucleosis as shown by leukocyte migration inhibition. Infect Immunol 17:28.Google Scholar
  58. Lemon, S.M., Hütt, L.M., Shaw, J.E., Li, J-H. and Pagano, J.S. (1977). Replication of EBV in epithelial cells during infectious mononucleosis. Nature 268:268.PubMedCrossRefGoogle Scholar
  59. Liebowitz, D., Wang, D., and Kieff, E. (1986). Orientation and patching of the latent infection membrane protein encoded by Epstein-Barr virus. J. Virol 58:233.PubMedGoogle Scholar
  60. Lipinski, M., Friedman, W.H., Tursz, T., Vincent, C., Pious, D., and Fellous, M. (1979). Absence of allogeneic restriction in human T-cell mediated cytotoxicity to Epstein-Barr virus-infected target cells. Demonstration of an HLA-linked control at the effector level. J. Exp. Med. 150:1310.PubMedCrossRefGoogle Scholar
  61. Mangi, R.J., Niederman, J.C., Kelleher, J.E., Dwayer, J.M., Evans, A.S., and Kantor, F.S. (1974). Depression of cell mediated immunity during acute infectious mononucleosis. N. Engl J. Med. 291:1149.PubMedCrossRefGoogle Scholar
  62. Mann, K., Staunton, D., and Thorley-Lawson, D. (1986). An Epstein-Barr virus encoded protein found in the plasma membrane of transformed cells. J. Virol 55:710.Google Scholar
  63. Martin, P.J., Shulman, H.M., Schubach, W.H., Hansen, J.A., Fefer, A., Miller, G., and Thomas E.D. (1984). Fatal Epstein-Barr-virus-associated proliferation of donor B cells after treatment of acute graft-versus-host disease with a murine anti-T-cell antibody. Ann. Intern Med. 101:310–315.PubMedGoogle Scholar
  64. Miller, G., Niederman, J.C., and Andrews, L. (1973). Prolonged oropharyngeal excretion of Epstein-Barr virus after infectious mononucleosis. N. Engl J. Med 288:229.PubMedCrossRefGoogle Scholar
  65. Moody, C.E., Casazza, B.A., Christenson, W.N., and Weksler, M.E., (1979). Lymphocyte transformation induced by autologous cells. VIIL Impaired autologous mixed lymphocyte reactivity in patients with acute infectious mononucleosis. J. Exp. Med. 150:1448.PubMedCrossRefGoogle Scholar
  66. Morgan, D.G., Miller, G., Niederman, J.C., Smith, H.W., and Dowaliby, J.M. (1979). Site of Epstein- Barr virus replication in the oropharynx. Lancet 2:1154.PubMedCrossRefGoogle Scholar
  67. Moss, D.J., Rickinson, A.B., Wallace, L.E., and Epstein, M.A. (1981). Sequential appearance of Epstein-Barr virus nuclear and lymphocyte-detected membrane antigens in B cell transformation. Nature 291:664.PubMedCrossRefGoogle Scholar
  68. Murray, R.J., Young, L.S., Calender, A., Gregory, C.D., Rowe, M., Lenoir, G.M., and Rickinson, A.B. (1988). Different patterns of Epstein-Barr virus gene expression and of cytotoxic T-cell recognition in B cell lines infected with transforming (B95–8) and non-transforming (P3HR-1) virus strains. J. Virol 62:894–901.PubMedGoogle Scholar
  69. Nikoskelainen, J., Ablashi, D.V., Isenberg, R.A., Neel, E.U., Miller, R.G., and Stevens, D.A. (1978). Cellular immunity in infectious mononucleosis. IL Specific reactivity to Epstein-Barr virus antigens and correlation with clinical and hematologic parameters. J. Immunol 121:1239.PubMedGoogle Scholar
  70. Nillson, K. (1979). In Epstein-Barr Virus, M.A. Epstein and B.G. Achong (eds.). Berlin, Springer-Verlag, pp. 225–281.CrossRefGoogle Scholar
  71. Ortaldo, J.R., Bonnard, G.D., and Herberman, R.B. (1977). Cytotoxic reactivity of human lymphocytes in vitro. J. Immunol 119:1351–1357.Google Scholar
  72. Pagano, J.S., and Okasinski, G.F. (1978). Pathogenesis of infectious mononucleosis, Burkitt’s lymphoma and nasopharyngeal carcinoma: A unified scheme. In Oncogenesis and Herpesviruses. G. de The, W. Henle, and F. Rapp (eds.). Lyon, International Agency for Research on Cancer, p. 451.Google Scholar
  73. Papamichail, M., Sheldon, P.J., and Holborow, E.J., (1974). T and B cell subpopulations in infectious mononucleosis. Clin. Exp. Immunol 18:1.PubMedGoogle Scholar
  74. Patel, P.C., and Menezes, J. (1982). Epstein-Barr virus (EBV)-lymphoid cell interactions. II. The influence of the EBV replication cycle on natural killing and antibody-dependent cellular cytotoxicity against EBV-infected cells. Clin. Exp. Immunol 48:589–601.PubMedGoogle Scholar
  75. Pattengale, P.K., Smith, R.W., and Gerber, P. (1974a). B cell characteristics of human peripheral and cord blood lymphocytes transformed by Epstein-Barr virus. J. Natl Cancer. Inst. 52:1081.PubMedGoogle Scholar
  76. Pattengale, P.K., Smith, R.W., and Perlin, E. (1974b). Atypical lymphocytes in acute infectious mononucleosis: Identification by multiple T and B lymphocyte markers. N. Engl J. Med. 291:1145.PubMedCrossRefGoogle Scholar
  77. Periman, P., Levine, P.H., Ablashi, D.V., and Royston, I. (1977). Cell mediated antigens. Int. J. Cancer 20:506.PubMedCrossRefGoogle Scholar
  78. Pope, J., Home, M., and Scott, W. (1968). Transformation of fetal human leukocytes in vitro by filtrates of human leukemic cell line containing herpes like virus. Int. J. Cancer 3:857.PubMedCrossRefGoogle Scholar
  79. Pope, J.H. (1967). Establishment of cell lines from peripheral leukocytes in infectious mononucleosis. Nature 216:810–811.PubMedCrossRefGoogle Scholar
  80. Purtilo, D.T. (1985). Failures in immunological control of EB virus infection: Fatal infectious mononucleosis. The Epstein-Barr Virus: Recent Advances, M.A. Epstein and B.G. Achong (eds.). London: William Heinemann Medical Books, pp. 65–74.Google Scholar
  81. Rapp, C.E., and Hewetson, J.F. (1978). Infectious mononucleosis. Am. J. Dis. Child. 132:78.PubMedGoogle Scholar
  82. Redman, B.M., and Klein, G. (1973). Cellular localization of an Epstein-Barr virus (EBV)-associated complement fixing antigen in producer and non- producer lymphoblastoid cell lines. Int. J. Cancer 11:499.CrossRefGoogle Scholar
  83. Reinherz, E.G., O’Brien, C., Rosenthal, P., and Schlossman, S.F. (1980). The cellular basis for viral-induced immunodeficiency: Analysis by monoclonal antibodies. J. Immunol. 125:1269.PubMedGoogle Scholar
  84. Reiss, C.S., Wang, D., Ghosh, D., Gaposchikin, C., and Kieff, E. (1987). Recognition of EBV plasma membrane protein expressed on murine cells after gene transfer. J. Immunol. 139:711–714.PubMedGoogle Scholar
  85. Rimm, I.L., Schlossman, S.F., and Reinherz, E.L. (1984). Natural killer-Uke activity mediated by activated T lymphocytes. Cell Immunol. 87:327–339.PubMedCrossRefGoogle Scholar
  86. Robinson, J., Frank, A., Henderson, E., Schweitzer, J., and Miller, G. (1979). Surface markers and size of lymphocytes in human blood stimulated into DNA-synthesis by EBV. Infect. Immunity 26: 225–231.Google Scholar
  87. Robinson, J., Smith, D., and Niederman, J. (1980). Mitotic EBNA-positive lymphocytes in peripheral blood during infectious mononucleosis. Nature 287:334–335.PubMedCrossRefGoogle Scholar
  88. Robinson, J., Smith, D., and Niederman, J. (1981). Plasmacytic differentiation of circulating Epstein- Barr virus infected B lymphocytes. J. Exp. Med. 153:235–244.PubMedCrossRefGoogle Scholar
  89. Rocchi, G., De Felici, A., Ragona, G., and Heinz, A. (1977). Quantitative evaluation of Epstein-Barr virus infected mononuclear peripheral blood leukocytes in infectious mononucleosis. N. Engl. J. Med 296:132.PubMedCrossRefGoogle Scholar
  90. Rosen, A., Gergely, P., Jondal, M., Klein, G., and Britton, S. (1977). Polyclonal immunoglobulin production after Epstein-Barr virus infection of human lymphocytes in vitro. Nature 267:52.PubMedCrossRefGoogle Scholar
  91. Rowe, M., Hildreth, J.E.K., Rickinson, A.B., and Epstein, M.A. (1982). Monoclonal antibodies to Epstein-Barr virus-induced, transformation-associated cell surface antigens: Binding patterns and effect upon virus-specific T cell cytotoxicity. Int. J. Cancer 29:373–381.PubMedCrossRefGoogle Scholar
  92. Scala, G., Morrone, G., Tamburini, M., Alfinito, F., Pastore, C.I., D’Alessio, G., and Venuta, S. (1987). Autocrine growth function of human interleukin 1 molecules on Roha 9, an EBV-transformed human B cell line. J. Immunol. 138:2527.PubMedGoogle Scholar
  93. Seeley, J., Svedmyr, E., Weiland, O., Klein, C., Moller, E., Eriksson, E., Anderson, K., and Van Der Waal, L. (1981). Epstein-Barr virus selective T cells in infectious mononucleosis are not restricted to HLA-A and B antigens. J. Immunol. 127:293.PubMedGoogle Scholar
  94. Sheldon, P.J., Papamichail, M., Hemsted, E.H., and Holborow, E.J. (1973). Thymic origin of atypical lymphoid cells in infectious mononucleosis.Lancet 1:1153.PubMedCrossRefGoogle Scholar
  95. Shope, T.C., DeChario, D., and Miller, G. (1973). Malignant lymphoma in cotton-top marmosets after inoculation with Epstein-Barr virus. Proc. Natl. Acad Sci. (USA) 70:2487–2491.CrossRefGoogle Scholar
  96. Sixbey, J.W., Davis, D.S., Young, L.S., Hutt-Retcher, L., Tedder, T.T., and Rickinson, A.B. (1987). Human epithelial cell expression of an Epstein-Barr virus receptor. Gen. Virol. 68:805–811.CrossRefGoogle Scholar
  97. Sixbey, J.W., Lemon, S.M., and Pagano, J.S. (1986). A second site for Epstein-Barr virus shedding: The uterine cervix. Lancet ii:l122.Google Scholar
  98. Sixbey, J.W., Vesterinen, E.H., Nedrud, J.G., Raab- Traub, N., Walton, L.A., and Papno, J.S. (1983). Replication of Epstein-Barr virus in human epithelial cells infected in vitro. Nature 306:480–489.PubMedCrossRefGoogle Scholar
  99. Sixbey, J.W., Nedrud, J.G., Raab-Traub, N., Hanes, R.A., and Pagano, J.S. (1984). Epstein-Barr virus replication in oropharyngeal epithelial cells. N. Engl. J. Med 310:1225–1230.PubMedCrossRefGoogle Scholar
  100. Strang, G., and Rickinson, A.B. (1987a). Multiple HLA class I-dependent cytotoxicities constitute the non-HLA restricted response in acute infectious mononucleosis. Eur. J. Immunol. 17:1007.PubMedCrossRefGoogle Scholar
  101. Strang, G., and Rickinson, A.B. (1987b). In vitro expansion of Epstein-Barr virus-specific HLA-restricted cytotoxic T cells direct from the blood of infectious mononucleosis patients. Immunology 62:647–654.PubMedGoogle Scholar
  102. Sugden, B., Phelps, M., and Domoradski, J. (1979). Epstein-Barr virus DNA is amplified in transformed lymphocytes. J. Virol. 31:590.PubMedGoogle Scholar
  103. Sumaya, C.V., and Keightley, R.G. (1981). B lymphocytopenia in infectious mononucleosis. Clin. Exp. Immunol 43:298.PubMedGoogle Scholar
  104. Sutton, R.N.P., Reynolds, K., Almond, J.P., Mar- ston, S.D., and Edmond, R.J.D. (1973). Immunoglobulins and EB virus antibodies in infectious mononucleosis. Clin. Exp. Immunol. 13:359.PubMedGoogle Scholar
  105. Svedmyr, E., Emberg, I., Seeley, J., Weiland, O., Masucci G., Tsukuda, K., Szigeti, R., Masucci, M.G., Blomgren, H., Berthold, W., Henle, W., and Klein, G., (1984). Virologie, immunologic, and clinical observations on a patient during the incubation, acute, and convalescent phases of infectious mononucleosis. Clin. Immunol. Immunopathol. 30: 437–450.PubMedCrossRefGoogle Scholar
  106. Svedmyr, E., and Jondal, M. (1975). Cytotoxic effector cells for B cell lines transformed by Epstein-Barr virus are present in patients with infectious mononucleosis. Proc. Natl Acad. Sci (USA) 72:1622.CrossRefGoogle Scholar
  107. Swendeman, S., and Thorley-Lawson, D.A. (1987). The activation antigen Blast-2, when shed, is an autocrine BDGF for normal and transformed B cells. EMBO J. 6:1637.PubMedGoogle Scholar
  108. Szigeti, R., Masucci, M.G., Henle, W., Henle, G., Purtilo, D., and Klein, G. (1982). Effect of different Epstein-Barr virus-determined antigens (EBNA, EA and VGA) on the leukocyte migration of health donors and patients with infectious mononucleosis and certain immunodeficiencies. Clin. Immunol Immunopathol 22:128–138.PubMedCrossRefGoogle Scholar
  109. Szigeti, R., Timar, L., Weiland, O., Henle, W., Henle, G., Hennessy, K., Kieff, E., Sulitzeanu, D., Dillner, J., and Klein, G. (1986). Epstein-Barr virus (EBV) antigen-specific leukocyte migration inhibition (LMI) in infectious mononucleosis. Clin. Immunol. Immunopathol. 41:342–350.PubMedCrossRefGoogle Scholar
  110. Tatsumi, E., Kimura, K., Takiuchi, Y., Fukuhara, S., Shirakawa, S., Uchino, H., Morikawa, S., and Minowada, J., (1980). T lymphocytes expressing human lA-like antigen in infectious mononucleosis (IM). Blood 56:383.PubMedGoogle Scholar
  111. ten Napel, C.H.H., and de The, T.H. (1980). Lymphocyte reactivity in infectious mononucleosis. J. Infect. Dis. 141:716.PubMedCrossRefGoogle Scholar
  112. Thorley-Lawson, A.D., Nadler, L.M., Bhan, A.K., and Schooley, R.T. (1985). Blast 2 (EBV CS), an early cell surface marker of human B cell activation is superinduced by Epstein-Barr virus. J. Immunol. 134:3007.Google Scholar
  113. Tomkinson, B.E., Wagner, D.K., Nelson, D.L., and Sullivan, J.L. (1987). Activated lymphocytes during acute Epstein-Barr virus infection. J. Immunol 139:3802–3807.PubMedGoogle Scholar
  114. Tosato, G. (1987). The Epstein-Barr virus and the immune system.Adv. Cancer Res. 49:75.PubMedCrossRefGoogle Scholar
  115. Tosato, G., and Blaese, R.M. (1985). The Epstein- Barr virus infection and immunoregulation in man. Adv. Immunol 37:99–149.PubMedCrossRefGoogle Scholar
  116. Tosato, G., Blaese, R.M., and Yarchoan, R. (1985). Relationship between immunoglobulin production and immortalization by Epstein-Barr virus. J. Immunol 135:959.PubMedGoogle Scholar
  117. Tosato, G., Magrath, LT., Koski, L, Dooley, N., and Blaese, R.M. (1979). Activation of suppressor T cells during Epstein-Barr virus-induced infectious mononucleosis. N. Engl J. Med. 301:1133.PubMedCrossRefGoogle Scholar
  118. Tosato, G., Marti, G.E., Yarchoan, P., Heilman, C.A., Wang, P., Pike, S.E., Korsmeyer, S.J., and Siminovitch, K. (1986). Epstein-Barr virus immortalization of normal cells of B cell lineage with nonproductive, rearranged immunoglobulin genes. J. Immunol 137:2037–2042.PubMedGoogle Scholar
  119. Tosato, G., Pike, S.E., and Blaese, R.M. (1983). Reversal of infectious mononucleosis-associated suppressor T cell activity by D-mannose. J. Exp. Med. 158:1048–1060.PubMedCrossRefGoogle Scholar
  120. Tosato, G., Pike, S.E., Koski, LR., and Blaese, R.M. (1982). Selective inhibition of immunoregulatory functions by cyclosporin A. J. Immunol 128:1986–1991.PubMedGoogle Scholar
  121. Tosato, G., Steinberg, A.D., Yarchoan, R., Heilman, C. A., Pike, S.E., deSeau, V., and Blaese, R.M. (1984). Abnormally elevated frequency of Epstein-Barr virus-infected B cells in the blood of patients with rheumatoid arthritis. J. Clin. Invest. 73:1789.PubMedCrossRefGoogle Scholar
  122. Turz, T., Friedman, W.H., Senik, A., Tsapis, A., and Fellous, M. (1977). Human virus infected target cells lacking HLA antigens resist specific T-lymphocyte cytolysis. Nature 269:806.CrossRefGoogle Scholar
  123. Twomey, J.J. (1974). Abnormalities in the mixed leukocyte reaction during infectious mononucleosis. J. Immunol 112:2278.PubMedGoogle Scholar
  124. Virolainen, M., Andersson, L.C., Lalla, M., and Von Essen, R. (1973). T lymphocyte proliferation in mononucleosis. Clin. Immunol Immunopathol 2:114.PubMedCrossRefGoogle Scholar
  125. Wallace, L.E., Rickinson, A.B., Rowe, M., Moss, D. J., Allen, D.J. and Epstein, M.A. (1982a). Stimulation of human lymphocytes with irradiated cells of the autologous Epstein-Barr virus-transformed cell line. L Virus-specific and non-specific components of the cytotoxic response. Cellular Immunol 67:129–140.CrossRefGoogle Scholar
  126. Wallace, L.E., Rowe, M., Gatson, J.S.H., Rickinson, A.B. and Epstein, M.A. (1982b). Cytotoxic T cell recognition of Epstein-Barr virus infected B cells, in. Establishment of HLA-restricted cytotoxic T cell lines using interleukin 2. Eur. J. Immunol 12:1012–1018.PubMedCrossRefGoogle Scholar
  127. Wang, F., Blaese, R.M., Zoon, K.C., and Tosato, G. (1987). Suppressor T cell clones from patients with acute Epstein-Barr virus-induced infectious mononucleosis. J. Clin. Invest. 79:7–14.PubMedCrossRefGoogle Scholar
  128. Wollheim, F.M., and Williams, R.C. (1966). Studies on macroglobulins of human serum. L Polyclonal immunoglobulin class M (IgM) increase in infectious mononucleosis. N. Engl J- Med. 274:61.PubMedCrossRefGoogle Scholar
  129. Wood, T.A., and Frenkel, G.P. (1967). The atypical lymphocyte. Am. J. Med. 42:923.PubMedCrossRefGoogle Scholar
  130. Yao Q.Y., Rickinson, A.B., and Epstein, M.A. (1984). A re-examination of the Epstein-Barr virus carrier state in healthy seropositive individuals. Int. J. Cancer 35:35–42.CrossRefGoogle Scholar
  131. Yarchoan, R., Tosato, G., Blaese, R.M., Simon, R.M., and Nelson, D.L. (1983). Limiting dilution analysis of Epstein-Barr virus-induced immunoglobulin production by human B cells. J. Exp. Med 157:1–14.PubMedCrossRefGoogle Scholar
  132. Yata, J., Desgranges, C., de The, G., and Tachibana, T. (1973). Lymphocytes in infectious mononucleosis. Properties of atypical cells and origin of lymphoblastoid lines. Biomedicine 19:479.PubMedGoogle Scholar
  133. Young, L.S., Sixbey, J.W., Clark, D., and Rickinson, A.B. (1986). Epstein-Barr virus receptors on human pharyngeal epittelia. Lancet i:240–242.CrossRefGoogle Scholar
  134. Zerbini, M., and Emberg, L (1983). Can Epstein-Barr virus infect and transform all the B lymphocytes of human cord blood? J. Gen. Virol 64:539–547.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Giovanna Tosato

There are no affiliations available

Personalised recommendations