Infectious Mononucleosis and Malignant Neoplasia

  • Ian Magrath
Part of the Clinical Topics in Infectious Disease book series (CLIN.TOP.INFECT)


Epstein-Barr virus (EBV) infection is ubiquitous, but is usually asymptomatic except in teenagers and young adults, some 50 percent of whom experience the syndrome of acute infectious mononucleosis at the time of primary infection. Although the virus establishes a permissive infection in a number of cell types in the mouth and pharynx, including the ductal cells of the salivary glands, it is the proliferation of latently infected (i.e., nonpermissive for viral replication) B lymphocytes in lymphoid tissue and the resultant cellular immune reaction against these EBV-infected cells which give rise to the syndrome of infectious mononucleosis described elsewhere in this book. EBV gains access to B lymphocytes via the surface receptor for the complement component C3d (CR2) (Nemerow et al. 1987), also known as CD21, and transforms them into lymphoblasts capable of indefinite proliferation in vitro. This capacity is conferred on the cell via a small set of EBV genes which are expressed in the absence of viral replication. In addition to "immortalizing" the cell, however, some of these latent genes induce an immune response against the EBV-infected cells which leads to their destruction. Destruction is accomplished initially by NK cells and nonspecifically reactive T cells which probably respond to EBV-induced activation antigens, and later by specifically reactive cytotoxic T lymphocytes which recognize virally coded proteins on the cell surface in the context of HLA class 1 antigens. The clinical syndrome of infectious mononucleosis, if it occurs at all, is thus limited in duration and rarely fatal. These two points— the potentially unUmited proliferation of EBV-infected B lymphocytes, and their control by immune mechanisms—are crucial and worthy of emphasis; for in the absence of an effective immune response, the stage is set for the progressive and inexorable accumulation of EBV-infected cells which, unchecked, will result in the death of the host. Intuitively, it would seem that the complete lack of an ability to control the proliferation of EBV-infected cells would resuh in a fatal lymphoproliferative process soon after primary EBV infection, whereas lesser degrees of impairment could result in the establishment of a more chronic or more localized process, or possibly of uncontrolled proliferation in immunoprivileged sites such as the brain. Penetration into these special sites may result from the presence of a persistently higher body burden of EBV-infected cells.


Latent Membrane Protein Infectious Mononucleosis Malignant Neoplasia Aotus Trivirgatus Tious Mononucleosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, M., Klein, G., Ziegler, J.L., et al. (1976). Association of Epstein-Barr viral genomes with American Burkitt lymphoma.Nature 260:357.PubMedCrossRefGoogle Scholar
  2. Bar, R., DeLor, C.J., Clausen, K.P., et al. (1974). Fatal infectious mononucleosis in a family. N. Engl J. Med. 290:363–367.PubMedCrossRefGoogle Scholar
  3. Baranski, B., Armstrong, G., Truman, J.T., et al. (1988). Epstein-Barr virus in the bone marrow of patients with aplastic anemia. Ann. Intern. Med. 109:695–704.PubMedGoogle Scholar
  4. Barriga, F., Kiwanuka J., Alvarez-Mon, M., Shira- mizu, B., et al. (1988). Significance of chromosome and breakpoint location in Burkitt’s lymphoma: Correlation with geographical origin and association with Epstein-Barr virus. Curr. Top. Microbiol. Immunol. 141:128.PubMedCrossRefGoogle Scholar
  5. Berard, C., O’Conor, G.T., and Thomas, L.B. (1969). Histopathological definition of Burkitts tumour. Bull. WHO 40:601–607.Google Scholar
  6. Berkel, A.T., Henle, W., Henle, G., et al. (1979). Ep- stein-Barr virus-related antibody patterns in ataxia telangiectasia. Clin. Exp. Immunol. 35:196–201.PubMedGoogle Scholar
  7. Berkel, A.T., Henle, W., Henle, G., et al. (1981). Ep- stein-Barr virus specific serology in immunologically compromised individuals. Cancer Res. 41: 4222–4225.Google Scholar
  8. Bieber, C.P., Reitz, B.A., and Jamieson, S.W. (1980). Malignant lymphoma in cyclosporin-A treated allograft recipients. Lancet 1:43.PubMedCrossRefGoogle Scholar
  9. Biggar, R.J., Henle, G., Bocker, J., et al. (1978). Primary Epstein-Barr virus infections in African infants. II. Clinical and serological observations during seroconversion. Int. J. Cancer 22:244–250.PubMedCrossRefGoogle Scholar
  10. Biggs, P.M. (1973). Marek’s disease. In The Herpesviruses, A.S. Kaplan (ed.). New York, Academic Press, pp. 557–594.Google Scholar
  11. Birx, D.L., Redfield, R.R., and Tosato, G. (1986). Defective regulation of Epstein-Barr virus infection in patients with acquired immunodeficiency syndrome (AIDS) or AIDS-related disorders. N. Engl. J. Med 314:874–879.PubMedCrossRefGoogle Scholar
  12. Boder, E., and Sedgwick, R. (1963). Ataxia-telengiec- tasia: A review of 101 cases. In Cerebrellum Posture and Cerebral Palsy, E. Walsh (ed.). Little Club for Clinical and Developmental Medicine, National Spastics Society Medical Education and Information Unit, vol. 8, pp. 110–118.Google Scholar
  13. Borzy, M.S., Hong, R., Horowitz, S.D., et al. (1979). Fatal lymphoma after transplantation of cultured thymus in children with combined immunodeficiency disease. N. Engl. J. Med 301:565–568.PubMedCrossRefGoogle Scholar
  14. Briggs, J., Hamilton, D.N.A., MacSween, R.N.M., et al. (1978). Infectious mononucleosis, herpes simplex infection, and diffuse lymphoma in a renal transplant recipient. Transplant 25:227–228.CrossRefGoogle Scholar
  15. Briles, W.E., Stone, H.A., and Cole, R.K. (1977). Marek’s disease: Effects of B histocompatibility al- loalleles in resistant and susceptible chicken lines. Science 195:193–195.PubMedCrossRefGoogle Scholar
  16. Britton, S., Andersson-Anvret, M., Gergely, P., et al. (1978). Epstein-Barr virus immunity and tissue distribution in a fatal case of infectious mononucleosis. N. Engl J. Med. 298:89–92.PubMedCrossRefGoogle Scholar
  17. Carter, C.D., Brown, T.M., Herbert, J.T., et al. (1977). Cancer incidence following infectious mononucleosis. Am. J. Epidemiol. 105:30–36.PubMedGoogle Scholar
  18. Cerilli, J., Rynasiewicz, J.J., Lemos, L.B., et al. (1977). Hodgkin’s disease in human renal transplantation. Am. J. Surg. 133:182–184.PubMedCrossRefGoogle Scholar
  19. Chaganti, R.S., Jhanwar, S.C., Koziner, B., et al. (1983). Specific translocations characterize Bur- kitt’s-like lymphoma of homosexual men with the acquired immunodeficiency syndrome. Blood 61:1265–1268.PubMedGoogle Scholar
  20. Cheeseman, S.H., Henle, W., Rubin, R.H., et al. (1980). Ann. Int. Med. 93:39–42.PubMedGoogle Scholar
  21. Chu, E.W., and Rabson, A.S. (1972). Chimerism in lymphoid cell culture line derived from lymph node. J. Natl. Cancer Inst. 48:771–775.PubMedGoogle Scholar
  22. Churchill, A.E., and Biggs, P.M. (1967). Agent of Marek’s disease in tissue culture.Nature 215: 528–530.PubMedCrossRefGoogle Scholar
  23. Connelly, R.R., and Anistine, B.W. (1974). A cohort study of cancer following infectious mononucleosis. Cancer Res. 34:1172–1178.PubMedGoogle Scholar
  24. Crawford, D.H., Epstein, M.A., Achong, B.G., et al. (1979). Virological and immunological studies on a fatal case of infectious mononucleosis. J. Infect. 1:37–48.CrossRefGoogle Scholar
  25. Crawford, D.H., Sweny, P., Edwards, J.M.B., et al. (1981). Lancet 1:10–13.PubMedCrossRefGoogle Scholar
  26. Crawford, D.H., Thomas, J.A., Janossy, G., et al. (1980). Epstein-Barr virus nuclear antigen positive lymphoma after cyclosporin. A treatment in patients with renal allograft.Lancet 1:1355–1356.PubMedCrossRefGoogle Scholar
  27. Davidson, R.J.L., and Lessles, S.E. (1977). Infectious mononucleosis in Hodgkin’s disease. Acta Haemat. 57:152–155.PubMedCrossRefGoogle Scholar
  28. Deinhardt, F., and Deinhardt, J. (1979). Comparative aspects: Oncogenic animal herpesviruses. In The Epstein-Barr Virus, M.A. Epstein and B.G. Achong (eds.). Berlin, Springer-Verlag, pp. 373–415.CrossRefGoogle Scholar
  29. de The, G. (1979). Demographic studies implicating the virus in the causation of Burkitt’s lymphoma: Prospects for nasopharyngeal carcinoma. In The Epstein-Barr Virus, M.A. Epstein and B.G. Achong (eds.). Berlin, Springer-Verlag, pp. 417–437.CrossRefGoogle Scholar
  30. de The, G., Day, N.E., Geser, A., et al. (1975). Sero- epidemiology of the Epstein-Barr virus: Preliminary analysis of an international study—A review. In Oncogenesis and Herpesviruses, G. de The, M.A. Epstein, and H. zur Hausen (eds.). Lyon, lARC, vol. II, Part 2, pp. 3–16.Google Scholar
  31. de The, G., Geser, A., Day, N.E., et al. (1978). Epide- mological evidence for causal relationship between Epstein-Barr virus and Burkitt’s lymphoma from Ugandan prospective study. Nature 274:756–761.CrossRefGoogle Scholar
  32. Diehl, v., Taylor, J., Parlin, J.A., et al. (1969). Infectious mononucleosis in East Africa. East Afr. Med. J. 46:407–413.PubMedGoogle Scholar
  33. Ellis, T.M., Lee, H.M., and Mohanakumar, T. (1981). Alterations in human regulatory T lymphocyte sub- populations after renal allografting. J. Immunol. 127:2199–2203.PubMedGoogle Scholar
  34. Else, R.W. (1974). Vaccinal immunity to Marek’s disease in bursectomized chickens. Vet. Ree. 95: 182–187.CrossRefGoogle Scholar
  35. Epstein, M.A. (1986). Vaccination against Epstein- Barr virus: Current progress and future strategies. Lancet 21:1270–1273.Google Scholar
  36. Epstein, M.A., and Achong, B.G. (1977). Pathogenesis of infectious mononucleosis.Lancet 2: 1270–1273.PubMedCrossRefGoogle Scholar
  37. Epstein, M.A., Achong, B.G., and Barr, Y.M. (1964). Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702–703.PubMedCrossRefGoogle Scholar
  38. Epstein, M.A., Hunt, R.D., and Rabin, H. (1973). Pilot experiments with EB virus in owl monkeys (Aotus trivirgatus). I. Reticuloproliferative disease in an inoculated animal. Int. J. Cancer 12: 309–318.PubMedCrossRefGoogle Scholar
  39. Emberg, I., Falk, K., and Hansson, M. (1987). Progenitor and pre-B lymphocytes transformed by Epstein-Barr virus. Int. J. Cancer 39:190–197.CrossRefGoogle Scholar
  40. Evans, A.S., Niederman, J.C., and McCollum, R.W. (1968). Seroepidemiological studies of infectious mononucleosis with EB virus.N. Engl. J. Med. 299:1121–1127.CrossRefGoogle Scholar
  41. Falk, L.A., Nigida, S., Deinhardt, F., et al. (1973). Oral secretion of herpesvirus saimiri in captive squirrel monkey families and incidence of infection in feral squirrel monkeys. J. Natl. Cancer Inst. 51: 1987–1989.PubMedGoogle Scholar
  42. Falletta, J.M., Fembach, D.J., Souht, M., et al. (1973). A fatal X-linked recessive reticuloendothelial syndrome with hyperglobulinemia: X-linked recessive reticuloendotheliosis. J. Fed. 83:549–558.Google Scholar
  43. Fialkow, P.J., Klein, E., Clifford, P. et al. (1973). Immunoglobulin and glucose-6-phosphate dehydrogenase as markers of cellular origin in Burkitt’s lymphoma. J. Exp. Med. 138:89–102.PubMedCrossRefGoogle Scholar
  44. Filipovitch, A.H., Shapiro, R., Robison, L., et al. (in press). The Non-Hodgkin’s Lymphomas, I.T. Magrath (ed.). London, Edward Arnold.Google Scholar
  45. Finch, S.C. (1969). Laboratory findings in infectious mononucleosis. In Infectious Mononucleosis, R.L. Carter and H.G. Penman (eds.). Oxford, Blackwell Scientific Publications, pp. 47–62.Google Scholar
  46. Finlay, J., Luft, B., Yousem, S., et al. (1986). Chronic infectious mononucleosis syndrome, pancytopenia, and polyclonal B lymphoproliferation terminating in acute lymphoblastic leukemia. Am. J. Ped, Hemat. Oncol. 8:18–27.CrossRefGoogle Scholar
  47. Fleckenstein, B. (1979). Oncogenic herpesviruses of non-human primates. Biochem. Biophys. Acta 560:301–342.PubMedGoogle Scholar
  48. Fleisher, G., Henle, W., Henle, G., et al. (1979). Pri- mary Epstein-Barr virus infection in American infants: Clinical and serological observations. J. Infect. Dis. 139:553–558.PubMedCrossRefGoogle Scholar
  49. Fleisher, G., Lennette, E.T., Henle, G., et al. (1979). Incidence of heterophile antibody responses in children with infectious mononucleosis. J. Ped. 94: 723–728.CrossRefGoogle Scholar
  50. Frizzera, G. (1987). The clinico-pathological expressions of Epstein-Barr virus infection in lymphoid tissues. Virchows Arch. B 53:1–12.Google Scholar
  51. Frizzera, G., Hanto, D.W., Gajl-Peczalska, K.J., et al. (1981). Polymorphic diffuse B-cell hyperplasias and lymphomas in renal transplant recipients. Cancer Res. 41:4262–4279.PubMedGoogle Scholar
  52. Gallo, R.C., and Gelmann, E.P. (1981). In search of a Hodgkin’s disease virus. N. Engl. J. Med. 304: 169–170.PubMedCrossRefGoogle Scholar
  53. Gergely, L., Czegledy, J., Vaczi, L., et al. (1979). Cells containing Epstein-Barr nuclear antigen (EBNA) in peripheral blood. Acta Microbiol. Acad. Sei. Hung 26:41–45.Google Scholar
  54. Gordon, J., Aman, P., Rosen, A., et al. (1985). Capacity of B-lymphocytic lines of diverse tumor origin to produce and respond to B-cell growth factors: A progression model for B-cell lymphomagenesis. Int. J. Cancer 35:251–256.Google Scholar
  55. Gordon, J., Guy, G., Walker, L., et al. (1986). Autocrine growth of human B lymphocytes: Maintained response to autostimulatory factors is the special feature of immortalization by Epstein-Barr virus— A hypothesis. Med. Oncol. Tumor Pharmacother. 3:269–273.PubMedGoogle Scholar
  56. Gossett, T.C., Gale, R.P., Fleischman, H., et al. (1979). Immunoblastic sarcoma in donor cells after bone-marrow transplantation.N. Engl. J. Med. 300:904–907.PubMedCrossRefGoogle Scholar
  57. Gowing, N.F.C. (1975). Infectious mononucleosis: Histopathologic aspects. Pathol. Ann. 10:1–20.Google Scholar
  58. Grose, C., Henle, W., Henle, G., et al. (1975). Primary Epstein-Barr infections in acute neurological diseases. N. Engl. J. Med 292:392–395.PubMedCrossRefGoogle Scholar
  59. Gunven, P., Klein, G., Klein, E., et al. (1980). Surface immunoglobulins on Burkitt’s lymphoma biopsy ceUs from 91 patients.Int. J, Cancer 25:711–719.CrossRefGoogle Scholar
  60. Gutensohn, N., and Cole, P. (1981). Childhood social environment and Hodgkin’s disease. N. Engl. J. Med 304:135–140.PubMedCrossRefGoogle Scholar
  61. Hambleton, G., and Cotton, D.G. (1969). Familial lymphoma. Proc. Roy. Soc. Med. 62:1095.PubMedGoogle Scholar
  62. Hanto, D.W., Frizzera, G., Gail-Peczalska, K.J., et al. (1982). Epstein-Barr virus induced B-cell lymphoma after renal transplantation: Acyclovar therapy and transition from polyclonal to monoclonal B-cell proliferation.N. Engl. J. Med. 306:913- 918.PubMedCrossRefGoogle Scholar
  63. Hanto, D.W., Frizzera, G., Gajl-Peczalska, K.J., et al. (1985). Epstein-Barr virus, immunodeficiency, and B cell lymphoproliferation. Transplantation 39:(5)461–472.PubMedCrossRefGoogle Scholar
  64. Hanto, D.W., Frizzera, G., Gajl-Peczalska, K.J., et al (1986). ImmunoglobuUn gene rearrangement (IGGR) studies conform the evolution of Epstein- Barr (EBV) induced polyclonal B-cell hyperplasia to monoclonal malignant B-cell lymphoma (meeting abstract) the second international symposium on EBV and associated malignant diseases. St. Petersburg, FL, Showa University Research Institute, p. 21.Google Scholar
  65. Hanto, D.W., Frizzera, G., Purtilo, D.T., et al. (1981). CHnical spectrum of ymphoproliferative disorders in renal transplant recipients and evidence for the role of Epstein-Barr virus. Cancer Res. 41: 4253–4261.PubMedGoogle Scholar
  66. Harris A., and Docherty, Z. (1988). X-linked lymphoproliferative disease: A karyotype analysis. Cyto- genet. Cell. Genet. 47:92–94.CrossRefGoogle Scholar
  67. Henle, W., and Henle, G. (1979). Seroepidemiology of the virus. In The Epstein-Barr Virus, M.A. Epstein and B.G. Achong (eds.). New York, Springer- Verlag, pp. 61–78.CrossRefGoogle Scholar
  68. Hertel, B.F., Rosai, J., Dehner, L.P., et al. (1977). Lymphoproliferative disorders in organ transplant recipients. Lab. Invest. 36:340.Google Scholar
  69. Hesse, T., Levine, P.H., Ebbesen, P., et al. (1977). A case of control study on immunity to two Epstein- Barr virus-associated antigens, and to herpes simplex virus and adenovirus in a population-based group of patients with Hodgkin’s disease in Denmark. 1971–73. Int. J. Cancer 19:49–58.PubMedCrossRefGoogle Scholar
  70. Hoover, R., and Fraumeni, J.F., Jr. (1973). Risk of cancer in renal transplant recipients.Lancet 2:55–57.PubMedCrossRefGoogle Scholar
  71. Jaffe, E.S. (1986). In The Pathology of Incipient Neoplasia. D.E. Henson and J. Albores-Saavedra (eds). Philadelphia, W.B. Saunders Company, pp. 87–115.Google Scholar
  72. Jarvis, J.E., Ball, G., Rickinson, A.B., et al. (1974). Cytogenetic studies on human lymphoblastoid cell lines from Burkitt’s lymphomas and other sources. Int. J. Cancer 14:716–721.PubMedCrossRefGoogle Scholar
  73. Jones, J.F., Shurim S., Abramowsky, et al. (1988). T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infection. N. Engl. J. Med. 318:733–761.PubMedCrossRefGoogle Scholar
  74. Katuski, T., Hinuma, Y., Saito, T., et al. (1979). Simultaneous presence of EBNA positive and colony forming cells. Int. J. Cancer 23:746–750.CrossRefGoogle Scholar
  75. Kenis, Y., Dustin, P., Jr., and Peltzer, T. (1958). Un cas de maladie de Hodgkin avec syndrome hemato- logique et serologique de monoucleose infecteuse. Acta Haemat. 20:329–336.PubMedCrossRefGoogle Scholar
  76. Kersey, J.H., Spector, B.D., and Good, R.A. (1974). Cancer in children with primary immunodeficiency diseases. J. Ped. 94:263–264.CrossRefGoogle Scholar
  77. Kersey, J.H., Spector, B.D., and Good, R.A. (1975). Cancer in children with primary immunodeficiency diseases. In Persons at High Risk of Cancer: An Approach to Cancer Etiology and Control, J.F. Fraumeni (ed.). New York, Academic Press, pp. 55–67.Google Scholar
  78. Klein, E., Emberg, I., Masucci, M.G., et al. (1981). T-cell response to B-cells and Epstein-Barr virus antigens in infectious mononucleosis. Cancer Res. 41:4210–4215.PubMedGoogle Scholar
  79. Klein, G., Svedmyr, E., Jondal, M., et al. (1976). EBV-determined nuclear antigen positive cells in the peripheral blood of infectious mononucleosis patients. Int. J. Cancer 17:21–26.PubMedCrossRefGoogle Scholar
  80. Koziner, B., Urmacher, C., Chaganti, R.S., et al. (1984). Acquired immunodeficiency syndrome in the development of lymphoma. UT MD Anderson. Clin. Conf. Cancer 27:277–298.Google Scholar
  81. Krueger, G.R.F., Papadakis, T., and Schaefer H-J. (1987). Persistent active Epstein-Barr like virus infection and atypical lymphoproliferation. Report of two cases. Am. J. Surg. Pathol. 1:972–981.Google Scholar
  82. Kvale, G., Hoiby, E.A., and Pederson, E. (1979). Hodgkin’s disease in patients with previous infectious mononucleosis.Int. J. Cancer 23:593–597.PubMedCrossRefGoogle Scholar
  83. Lange, B., Henle, W., Meyers, J.D., et al. (1980). Epstein-Barr virus-related serology in marrow transplant recipients. Int. J. Cancer 26:151–157.PubMedCrossRefGoogle Scholar
  84. Lenoir, G.M., and Bomkamm, G.W. (1987). Bur- kitt’s lymphoma, a human cancer model for the study of the multistep development of cancer: Proposal for a new scenario. Adv. Viral Oncol. 7:173–206.Google Scholar
  85. Lenoir, G.M., Philip, T., and Sohier, R. (1984). In Pathogenesis of Leukemias and Lymphomas: Environmental Influences, I.T. Magrath, G.T. O’Conor, and B. Ramot (eds.). New York, Raven Press, pp. 283–295.Google Scholar
  86. Lewis, R.B., Castor, C.W., Knisley, R.E., et al. (1976). Frequency of neoplasia in systemic lupus ery- thematosis and rheumatoid arthritis. Arthritis Rheum.19:1256.PubMedCrossRefGoogle Scholar
  87. Lindahl, T., Klein, G., Reedman, B.M., et al. (1974). Relationship between Epstein-Barr virus (EBV) DNA and the EBV-determined nuclear antigen (EBNA) in Burkitt lymphoma biopsies and other lymphoproliferative malignancies. Int. J. Cancer13:764–772.PubMedCrossRefGoogle Scholar
  88. Lindahl, T., Klein, G., Reedman, B.M., et al. (1981). Lymphoma development in mice and humans: Diversity of initiation is followed by convergent cytogenetic evolution. Proc. Natl. Acad. Sei. (USA)76:2442–2446.Google Scholar
  89. Louie, S., and Schwartz, R.S. (1978). Immunodeficiency and the pathogenesis of lymphoma and leukemia. In Leukemia and Lymphoma,E.J. Freireich, E.M. Hersch, P.A. Miescher, and E.R. Jaffe (eds.). New York, Comme and Stratton.Google Scholar
  90. Lucke, B. (1938). Carcinoma in the leopard frog: Its probable cause by a virus. J. Exp. Med.68:457–468.PubMedCrossRefGoogle Scholar
  91. Lukes, R.J. (1980). The functional approach to the pathology of malignant lymphomas. In Malignant Lymphoproliferative Diseases,J.G. Van den Tweel et al. (eds.). Boston, Leiden University Press, pp. 187–211.CrossRefGoogle Scholar
  92. Lukes, R.J., and Cox, F.H. (1958). Clinical and morphological findings in 30 fatal cases of infectious mononucleosis. Am. J. Pathol.34:586.Google Scholar
  93. Lukes, R.J., and Tindle, B.H. (1978). Immunoblastic lymphadenopathy: A prelymphomatous state of immunoblastic sarcoma. In Lymphoid Neoplasias,E. Mathe, M. Seligman, and M. Tubiana (eds.). Berlin, Springer-Verlag, vol. I, pp. 241–246.CrossRefGoogle Scholar
  94. Magrath, I.T. (1987). Malignant non-Hodgkin’s lymphomas in children. Hematol Oncol. Clin. North. Am.1:577–602.PubMedGoogle Scholar
  95. Magrath, LT., Freeman, C.B., Pizzo, P., et al. (1980). Characterization of lymphoma derived cell lines: Comparison of cell lines positive and negative for Epstein-Barr virus nuclear antigen. II. Surface markers.J. Natl. Cancer Inst.64:477–483.PubMedGoogle Scholar
  96. Magrath, LT., Henle, W., Owor, R., et al. (1975). Antibodies to Epstein-Barr-virus antigens before and after the development of Burkitt’s lymphoma in a patient treated for Hodgkin’s disease. N. Engl. J. Med292:621–623.PubMedCrossRefGoogle Scholar
  97. Manolov, G., and Manolova, Y. (1972). Marker band in one chromosome 14 from Burkitt lymphomas. Nature231:33–34.CrossRefGoogle Scholar
  98. Marczynska, B., Falk, L.A., Wolfe, L.G., et al. (1973). Transplantation and cytogenetic studies of herpes virus saimiri-induced disease in marmoset monkeys. J. Natl. Cancer Inst.50:331–337.PubMedGoogle Scholar
  99. Marek, J. (1907). Multiple Nervenentzündung (Polyneuritis) bei Hühnern. Deutsche Tierarztl. Wochenshr. 15:417–421.Google Scholar
  100. Marker, S.C., Ascher, N.L., Kalis, J.M., et al. (1979). Epstein-Barr virus antibody responses and clinical illness in renal transplant recipients. Surgery 85:433–440.PubMedGoogle Scholar
  101. Martin, PJ. Schulman, H.M., Schubach, W.H., et al. (1984). Fatal Epstein-Barr virus associated proliferation of donor B cells after treatment of acute graft versus host disease with a murine anti-T cell antibody. Ann. Int. Med. 101:310–315.Google Scholar
  102. Massey, F.C., Lane, L.L., and ImbrigUa, J.E. (1953). Acute infectious mononucleosis and Hodgkin’s disease occurring simultaneously in the same patient. JAMA 151:994–995.CrossRefGoogle Scholar
  103. Masucci, M.G., Szigeti, R., Emberg, I., et al. (1981). Cellular immune defects to Epstein-Barr virus- determined antigens in young males. Cancer Res. 41:4284–4291.PubMedGoogle Scholar
  104. McMahon, B. (1966). Epidemiology of Hodgkin’s disease. Cancer Res. 26:1189–1200.Google Scholar
  105. Miller, G. (1979). Experimental carcinogenicity by the virus in vivo. In The Epstein-Barr Virus, M.A. Epstein and B.G. Achong (eds.). Berlin, Springer- Verlag, pp. 351–372.CrossRefGoogle Scholar
  106. Müler, G., Shope, T., Coope, D., et al. (1977). Lymphoma in cotton-top marmosets after inoculation with Epstein-Barr virus: Tumor incidence, histologic spectrum, antibody responses, demonstration of viral DNA and characterization of viruses. J. Exp. Med. 145:948–967.CrossRefGoogle Scholar
  107. Mochanko, K., Fejes, M., Breazavscek, M., et al. (1979). The relation between Epstein-Barr virus antibodies and clinical symptomatology and immunodeficiency in patients with Hodgkin’s disease. Cancer 44:2065–2070.PubMedCrossRefGoogle Scholar
  108. Moss, D.J., Rickinson, A.B., and Pope, J.H. (1978). Long term T-cell-mediated immunity to Epstein- Barr virus in man. Int. J. Cancer 22:662–668.PubMedCrossRefGoogle Scholar
  109. Moss, D.J., Rickinson, A.B., and Pope, J.H. (1979). Long-term T-cell-mediated immunity to Epstein- Barr virus in man. III. Activation of cytotoxic T cells in virus-infected leukocyte cultures. Int. J. Cancer 23:618–625.PubMedCrossRefGoogle Scholar
  110. Munoz, N., Davidson, R.J., Withoff, B., Ericsson, J.E., et al. (1978). Infectious mononucleosis and Hodgkin’s disease. Int. J. Cancer 22:10–13.PubMedCrossRefGoogle Scholar
  111. Naegele, R.F., and Granoflf, A. (1977). Viruses and renal carcinoma of Rana pipiens. XV. The presence of virus-associated membrane antigen(s) on Lucke tumor cells. Int. J. Cancer 19:414–418.PubMedCrossRefGoogle Scholar
  112. Naegele, R.F., Granoff, A., and Darlington, R.W. (1974). The presence of the Lucke herpesvirus genome in induced tadpole tumors and its oncogenicity: Koch-Henle postulates fulfilled. Proc. Natl Acad Sci (USA) 71, 830–834.CrossRefGoogle Scholar
  113. Nagington, J., and Gray, J. (1980). Cyclosporin-A immunosuppression, Epstein-Barr-virus antibody and lymphoma. Lancet 1:536–537.PubMedCrossRefGoogle Scholar
  114. Nathwani, B.N., Rappaport, H., Moran, E.M., et al. (1978). Evolution of immunoblastic lymphoma in angioimmunoblastic lymphadenopathy. In Lymphoid Neoplasias, E. Mathe, M. Seligman, and M. Tubiana (eds.). Berlin, Springer-Verlag, pp. 235–240.CrossRefGoogle Scholar
  115. National Cancer Institute (1982). National Cancer Institute sponsored study of classifications of non- Hodgkin’s lymphomas. Summary and description of a working, formulation for clinical usage. Cancer 49:2112–2135.CrossRefGoogle Scholar
  116. Nazerian, K. (1979). Marek’s disease lymphoma of chicken and its causative herpesvirus. Biochem. Biophys. Acta 560:375–395.PubMedGoogle Scholar
  117. Nemerow, G.R., Mold, C., Sehend, V.K., et al. (1987). Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: Sequence homology of gp350 and C3 complement fragment C3d. J. Virol. 61:1416.PubMedGoogle Scholar
  118. Neri, A., Barriga, F., Knowles, D.M., et al. (1988). Different regions of the immunoglobulin heavy chain locus are involved in chromosomal translocations in distinct pathogenetic forms of Burkitt’s lymphoma.Proc. Natl. Acad. Sei (USA) 85: 2748–2752.CrossRefGoogle Scholar
  119. Newell, G.R., Rawling, W., Kinneer, B.K., et al. (1973). Case control study of Hodgkin’s disease. I. Results of the interview questionnaire. J. Natl. Cancer Inst. 31:1437–1441.Google Scholar
  120. Niederman, J.C., Evans, A.S., Subramanyan, M.S., et al. (1970). Prevalence, incidence and persistence of EB virus antibody in young adults.N. Engl. J. Med 282:361–365.PubMedCrossRefGoogle Scholar
  121. Nilsson, K. (1979). The nature of lymphoid cell lines and their relationship to the virus. In The Epstein- Barr Virus, M.A. Epstein and B.G. Achong (eds.). Berlin, Springer-Verlag, pp. 225–281.CrossRefGoogle Scholar
  122. Nonoyama, M., Huang, C.H., Pagano, J.S., et al. (1973). DNA of Epstein-Barr virus, detected in tissue of Burkitt’s lymphoma and nasopharyngeal carcinoma. Proc. Natl. Acad. Sei. (USA) 70:3265–3268.CrossRefGoogle Scholar
  123. Nonoyama, M., Kawai, Y., Huang, C.H., et al. (1974). Epstein-Barr virus DNA in Hodgkin’s disease, American Burkitt’s lymphoma and other human tumors. Cancer Res. 34, 1228–1231.PubMedGoogle Scholar
  124. Pallesen, G., Halstrup, J., Thestrup-Pedersen, K., et al. (1980). Histological and immunopathological studies in a case of chronic Epstein-Barr virus infection terminating in a Burkitt-like lymphoma. Scand J. Haemat. 25:347–357.PubMedCrossRefGoogle Scholar
  125. Pattengale, P.K., Taylor, C.R., and Pegalow, C. (1981). Malignant B-cell lymphomas following and associated with infectious mononucleosis: A comparison of two cases. Am. J. Ped. Hem. One. 3:35–42.Google Scholar
  126. Payne, L.N., Frazier, J.A., and Powell, P.C. (1976). Pathogenesis of Marek’s disease. Int. Rev. Exp. Path. 16:59–153.PubMedGoogle Scholar
  127. Pearson, G.R., and Scott, R.E. (1977). Isolation of virus-free herpesvirus saimiri antigen-positive plasma membrane residues. Proc. Natl. Acad. Sei. (USA) 74:2546–2550.CrossRefGoogle Scholar
  128. Pelicci, P.G., Knowles, D.M., Arlin, Z.A., et al. (1986). Multiple monoclonal B cell expansions and c-myc oncogene rearrangements in acquired immune deficiency syndrome-related lymphoprolifer- ative disorders. Implications for lymphomagenesis. J. Exp. Med. 164:2049–2060.PubMedCrossRefGoogle Scholar
  129. Pelicci, P.G., Knowles, D.M., Magrath, I., et al. (1986). Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc. Natl. Acad. Sei. (USA) 83:2984–2988.CrossRefGoogle Scholar
  130. Penn, I. (1970a). Malignant Tumors in Organ Transplant Recipients. New York, Springer-Verlag.Google Scholar
  131. Penn, I. (1970b). Malignancies associated with immunosuppressive or cytotoxic therapy. Surgery 83:492–502.Google Scholar
  132. Penn, I. (1979). Leukemia and lymphomas associated with the use of cytotoxic and immunosuppressive drugs. In Strategies on Clinical Hematology, R. Gross and K-P. Hellriegel (eds.). Berlin, Springer-Verlag, vol. I, pp. 7–13.Google Scholar
  133. Perry, G.S., Spector, B.D., Schuman, L.M., et al. (1980). The Wiskott-Aldrich syndrome in the United States and Canada (1892–1979). J. Ped. 97:72–78.CrossRefGoogle Scholar
  134. Pizzo, P.A., Magrath, I.T., and Jay, G. (1981). Characterization of the Epstein-Barr virus isolated from a cell line derived from a patient with American Burkitt’s lymphoma. Cancer Res. 41:3161–3164.PubMedGoogle Scholar
  135. Potter, M. Mushinski, J.F., Mushinski, E.B., et al. (1987). Avian v-myc replaces chromosomal translocation in murine plasmacytomagenesis.Science 235:787–789.PubMedCrossRefGoogle Scholar
  136. Provisor, A.J., lacuone, J.J., Chilcote, R.R., et al. (1975). Acquired agammaglobulinemia after a life threatening illness with clinical and laboratory features of infectious mononucleosis. N. Engl. J. Med. 293:62–64.PubMedCrossRefGoogle Scholar
  137. Purchase, G.H., and Sharma, J.M. (1974). Amelioration of Marek’s disease and absence of vaccine protection in immunologically deficient chickens. Nature 248:419–421.PubMedCrossRefGoogle Scholar
  138. Purtilo, D.T. (1974). Fatal infectious mononucleosis in familial lymphohistiocytosis. N. Engl. J. Med. 291:736.PubMedGoogle Scholar
  139. Purtilo, D.T. (1987). Epstein-Barr Virus: The spectrum of its manifestations in human beings. South. Med J. 80:943–947.PubMedCrossRefGoogle Scholar
  140. Purtüo, D.T., Cassel, C.K., Yang, J.P.S., et al. (1975). X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease). Lancet 1, 935–941.CrossRefGoogle Scholar
  141. Purtüo, D.T., DeFlorio, D., Hütt, L.M., et al. (1977). Variable phenotypic expression of an X-linked recessive lymphoproliferative syndrome. N. Engl. J. 297:1077–1081.CrossRefGoogle Scholar
  142. Purtilo, D.T., Paquin, L., DeFlorio, D., et al. (1979). Immunodiagnosis and immunopathogenesis of the X-linked recessive lymphoproliferative syndrome. Seminars Hemat. 16:309–343.Google Scholar
  143. Purtilo, D.T., Sakamoto, K., Saemundson, A., et al. (1981). Documentation of Epstein-Barr virus infection in immunodeficient patients with life threatening lymphoproliferative diseases. Cancer Res. 41:4226–4236.PubMedGoogle Scholar
  144. Purtilo, D.T., Tatsumi, E., Manolov, G., et al. (1985). Epstein-Barr virus as an etiological agent in the pathogenesis of lymphoproliferative diseases in immune deficient patients. Rev. Exp. Pathol. 27:113–183.Google Scholar
  145. Purtilo, D.T., Yang, J.P.S., Allegra, S., et al. (1977). Hematopathology and pathogenesis of the X-linked recessive lymphoproliferative syndrome. Am. J. Med 62:225–233.PubMedCrossRefGoogle Scholar
  146. Purtilo, D.T., Yang, J.P.S., Allepa, S., et al. (1980). Immunopathology of infectious mononucleosis and other complications of EBV infections. In Pathology Annual, S. Somers (ed.). New York, Ap- pleton-Century-Crofts, pp. 253–294.Google Scholar
  147. Rabin, H., Stmad, B.C., Neubauer, R.H., et al. (1980). Comparisons of nuclear antigens of Ep- stein-Barr virus (EBV) and EBV-like simian viruses. J. Gen. Virol. 48(2):265–272.PubMedCrossRefGoogle Scholar
  148. Ragona, G., Caterina Sirianni, M., Soddu, S., et al. (1986). Evidence for disregulation in the control of Epstein-Barr virus latency in patients with AIDS- related complex. Clin. Exp. Immunol. 66:17–24.PubMedGoogle Scholar
  149. Reece, R.R., Gartner, J.G., Seemayer, T.A., et al. (1981). Epstein-Barr virus in a malignant lymphoproliferative disorder. Cancer Res. 41:4243–4267.PubMedGoogle Scholar
  150. Reisman, D., and Sugden, B. (1986). Transactivation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen. 1. Mol. Cell. Biol, 3838–3846.Google Scholar
  151. Reitz, C., Graham, W., Harkey, M., et al. (1987). Non-Hodgkin’s lymphoma (NHL) as second malignancies in clinically cured Hodgkin’s disease (HD) (meeting abstract). Proc. Ann. Meet. Am. Soc. Clin. Oncol. 6:A808.Google Scholar
  152. Rickinson, A.B. (1986). In The Epstein-Barr Virus: Recent Advances, M.A. Epstein and B.G. Achong (eds.). New York, Wiley, pp. 75–125.Google Scholar
  153. Rickinson, A.B., Crawford, D., and Epstein, M.A. (1977). Inhibition of the in vitro outgrowth of Ep- stein-Barr virus-transformed lymphocytes by thymus-dependent lymphocytes from infectious mononucleosis patients. Clin. Exp. Immunol. 28:72–79.PubMedGoogle Scholar
  154. Rickinson, A.B., Gregory, C.D., and Young, L.S. (1987). Viruses and cancer risks outgrowth of Ep- stein-Barr virus positive Burkitt’s lymphoma in the immune host.Med. Oncol Tumor Pharmacother. 4:177–186.PubMedGoogle Scholar
  155. Rickinson, A.B., Moss, D.J., and Pope, J.H. (1979). Long-term T-cell mediated immunity to Epstein- Barr virus in man. II. Components necessary for regression in virus-infected leukocyte cultures. Int. J. Cancer 23:610–617.PubMedCrossRefGoogle Scholar
  156. Rickinson, A.B., Moss, D.J., Pope, J.H., et al. (1980). Long-term T-cell mediated immunity to Epstein- Barr virus in man. IV. Development of T-cell memory in convalescent infectious mononucleosis patients. Int. J. Cancer 25:59–65,PubMedCrossRefGoogle Scholar
  157. Rickinson, A.B., Moss, D.J., Wallace, L.E., et al. (1981). Long-term T-cell-mediated immunity to Epstein-Barr virus. Cancer Res. 41:4216–4221.PubMedGoogle Scholar
  158. Robinson, J.E., Brown, N., Andiman, W., et al. (1980). Diflfuse polyclonal B-cell lymphoma during primary infection with Epstein-Barr virus. N. Engl J. Med. 302:1293–1297.PubMedCrossRefGoogle Scholar
  159. Robinson, J., Smith, D., and Niederman, J. (1980). Mitotic EBNA-positive lymphocytes in peripheral blood during infectious mononucleosis. Nature 287:334–335.PubMedCrossRefGoogle Scholar
  160. Robinson, J., Smith, D., and Niederman, J. (1981). Plasmacytic differentiation of circulating Epstein- Barr virus-infected B lymphocytes during acute infectious mononucleosis. J. Exp. Med. 153: 235–244.PubMedCrossRefGoogle Scholar
  161. Rocchi, G., deFelici, A., Ragona, G., et al. (1973). Quantitative evaluation of Epstein-Barr virus- infected mononuclear peripheral blood leukocytes in infectious mononucleosis. N. Engl. J. Med. 296:132–134.CrossRefGoogle Scholar
  162. Rooney, C.M., Edwards, C.F., Lenoir, G.M., et al. (1986). Differential activation of cytotoxic responses by Burkitt’s lymphoma (BL) cell lines: Relationship to the BL surface phenotype. Cell. Im- mmol. 102:99–112.Google Scholar
  163. Rosdahl, N., Larsen, S.O., and Clemmensen, J. (1973). Hodgkin’s disease in patients with previous infectious mononucleosis: 30 years experience. Br. Med. J. 2:253–256.CrossRefGoogle Scholar
  164. Rowe, D.T., Rowe, M., Evan, G.J., et al. (1986). Restricted expression of EBV latent genes and T-lym- phocyte detected membrane antigen in Burkitt’s lymphoma cells. EMBO J. 5:2599–2607.PubMedGoogle Scholar
  165. Rowe, M., Rowe, D.T., Gregory, C.D., et al. (1987). Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt’s lymphoma cells. EMBO J. 6:2743–2751.PubMedGoogle Scholar
  166. Saemundsen, A.K., Bertel, A.I., Heule, W., et al. (1981). Epstein-Barr virus carrying lymphoma in a patient with ataxia telangiectasia. Brit. Med. J. 282:425–427.CrossRefGoogle Scholar
  167. Saemundsen, A.K., Purtilo, D.T., Sakamoto, K., et al. (1981). Documentation of Epstein-Barr virus infection in immunodeficient patients with life-threaten- ing lymphoproliferative diseases. Cancer Res. 41: 4237–4242.PubMedGoogle Scholar
  168. Sakamoto, K., Freed, H., and Purtüo, D.T. (1980). Antibody responses to Epstein-Barr virus in families with the X-linked lymphoproliferative syndrome.J. Immunol 125:921–925.PubMedGoogle Scholar
  169. Salvador, H.A., Harrison, E.G., and Kyle, R.A. (1971). Lymphadenopathy due to infectious mononucleosis. Its confusion with malignant lymphoma. Cancer 27:1029–1040.PubMedCrossRefGoogle Scholar
  170. Sarai, R., Bums, W.H., Laskin, O.L., et al. (1981). Acyclovar prophylaxis of herpes-simplex-virus infections. N. Engl J. Med 305:63–67.CrossRefGoogle Scholar
  171. Scherdin, U., and Holzel, F., (1987). Interaction of retroviruses and oncogenes with the cellular genome. 1. Arzneimittelforschung 37:1205–1209.PubMedGoogle Scholar
  172. Schneck, S.A., and Penn, I. (1971). De-novo brain tumors in renal-transplant recipients. Lancet 1:983–986.PubMedCrossRefGoogle Scholar
  173. Seeley, J., Sakamoto, K., Hansen, S.H., et al. (1981). Abnormal lymphocyte subsets on X-linked lymphoproliferative syndrome.Immunol 127:2618–2620.Google Scholar
  174. Sharma, J.M., and Witter, R.L. (1975). The effect of B-cell immunosuppression on age-related resistance of chickens to Marek’s disease. Cancer Res. 35:711–717.PubMedGoogle Scholar
  175. Sharma, J.M., Witter, R.L., and Purchase, H.G. (1975). Cell mediated immune surveillance in Marek’s disease: Absence. Nature 253:477- 479.PubMedCrossRefGoogle Scholar
  176. Shope, T., Dechairo, D., and Miller, G. (1973). Malignant lymphoma in cotton-top marmosets after inoculation with Epstein-Barr virus. Proc. Natl Acad. Sei. (USA) 70:2487–2491.CrossRefGoogle Scholar
  177. Spector, B.D., Perry, G.S., III, Good, R.A., et al. (1978). Immunodeficiency diseases and malignancy. In The Immunopathology of Lymphoreticu- lar Neoplasms, J.J. Twomey and R.A. Good (eds.). New York, Plenum Medical Book Co., pp. 203–237.CrossRefGoogle Scholar
  178. Starzl, T.E., Porter, K.A., Iwatski, S., et al. (1984). Reversibility of lymphomas and lymphoproliferative lesions developing under cyclosporin-steroid therapy. Lancet 1:583–587.PubMedCrossRefGoogle Scholar
  179. Strauch, B., Andrews, L.L., Niegel, N., et al. (1974). Oropharyngeal excretion of Epstein-Barr virus by renal transplant recipients and other patients treated with immunosuppressive drugs. Lancet 1:234–237.PubMedCrossRefGoogle Scholar
  180. Subar, M., Neri, A., Inghirami, G., Knowles, D.M., and Dalla Favera R. (1988). Frequent c-myc on- coglene activation and in frequent presence of Ep- stein-Barr virus genome in AIDS-associated lymphoma. Blood 12:661–61Google Scholar
  181. Sugamura, K., Tanaka, Y., and Hinuma, Y. (1981). Establishment of human cytotoxic T-cell lines specific for Epstein-Barr virus-transformed autologous cells. Int. J. Cancer 28:137–142.PubMedCrossRefGoogle Scholar
  182. Sullivan, J.L., Byron, K.S., Brewster, F.E., et al. (1980). Deficient natural killer (NK) cell activity in patients with the X-linked lymphoproliferative syndrome. Science 210:543–545.PubMedCrossRefGoogle Scholar
  183. Sullivan, J.L., Byron, K.S., Brewster, F.E., et al. (1983). X-linked lymphoproliferative syndrome. Natural history of the immunodeficiency.J. Clin. Invest. 71:1765–1778.PubMedCrossRefGoogle Scholar
  184. Sullivan, J.L., Medveczky, P., Forman, S.J., et al. (1984). Epstein-Barr virus induced lymphoprolifer- ation. Implications for antiviral therapy. N. Engl. J. Med. 311:1163–1167.PubMedCrossRefGoogle Scholar
  185. Sullivan, J.L., Woda, B.A., Herrod, H.G., et al. (1985). Epstein-Barr virus-associated hemophago- cytic syndrome: Virological and immunopathologi- cal studies. Blood 65:1097–1104.PubMedGoogle Scholar
  186. Svedmyr, E., and Jondal, M. (1975). Cytotoxic effector cells specific for B cell lines transformed. Proc. Natl. Acad Sei. (USA) 72:1622–1626.CrossRefGoogle Scholar
  187. Swendeman, S., and Thorley-Lawson, D.A. (1987). The activation antigen blast-2, when shed, is an autocrine BCGF for normal and transformed B ceUs. EMBO J. 6:1637–1642.PubMedGoogle Scholar
  188. Thestrup-Pederson, K., Esmann, U., Bisballe, S., et al. (1980). Epstein-Barr-virus-induced lymphoproliferative disorder converting to a fatal Burkitt- like lymphoma in a boy with interferon-inducible chromosomal defect. Lancet 2:997–1001.CrossRefGoogle Scholar
  189. Thorley-Lawson, D.A., and Israelsohn, E.S. (1987). Generation of specific cytotoxic T cells with a fragment of the Epstein-Barr virus encoded p63 membrane protein. Proc. Natl. Acad. Sei. (USA) 84: 5384–5388.CrossRefGoogle Scholar
  190. Tosato, G. (1987). The Epstein-Barr virus and the immune system.Adv. Cancer Res. 49:75–125.PubMedCrossRefGoogle Scholar
  191. Tosato, G., and Blaese, R.M. (1985). Epstein-Barr virus infection and immunoregulation in man. Adv. Immunol. 37:99–149.PubMedCrossRefGoogle Scholar
  192. Tosato, G. Magrath, I, Koski, L, et al. (1979). Activation of suppressor cells during Epstein-Barr-virus induced infectious mononucleosis. N. Engl J. Med. 301:1133–1137.PubMedCrossRefGoogle Scholar
  193. Tucker, M.A., Coleman, C.N., Cox, R.S., et al. (1988). Risk of second cancers after treatment for Hodgkin’s disease. N. Engl. J. Med 318, 76–81.PubMedCrossRefGoogle Scholar
  194. Virelizier, J-L., Lenoir, G., and Griscelli, C. (1978). Persistent Epstein-Barr virus infection in a child with hypergammaglobulinaemia and immunoblas- tic proliferation associated with a selective defect in immune interferon secretion. Lancet 2:231- 234.PubMedCrossRefGoogle Scholar
  195. Wang, F., Gregory, C.D., Rowe, M., et al. (1987). Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proc. Natl. Acad Sei. (USA) 84:3452- 3456.CrossRefGoogle Scholar
  196. Wang, D., Liebowitz, D., and Kieff, E. (1985). An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43:831–840.PubMedCrossRefGoogle Scholar
  197. Whang-Peng, J., Lee, E.C., Sieverts, H., et al. (1984). Burkitt’s lymphoma in AIDS: A cytogenetic study. Blood 63:818–822.PubMedGoogle Scholar
  198. Whittle, H.C., Brown, J., Marsh, K., et al. (1984). T-cell control of Epstein-Barr virus-infected B cells is lost during P. falciparum malaria. Nature 312:449–450.PubMedCrossRefGoogle Scholar
  199. Wilson, W.H., and Magrath, LT.. (in press). In The Non-Hodgkin’s Lymphomas, LT. Magrath (ed.). London, Edward Arnold.Google Scholar
  200. Zech, L., Haglund, U., Nilsson, K., et al. (1976). Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas. Int. J. Cancer 17:47–56.PubMedCrossRefGoogle Scholar
  201. Ziegler, J.L., Drew, W.L., Miner, R.C., et al. (1982). Outbreak of Burkitt’s-like lymphoma in homosexual males. Lancet, 631–632.Google Scholar
  202. Zulman, J., Jaffe, R., and Talal, N. (1978). Evidence that the malignant lymphoma of Sjogren’s syndrome is a monoclonal B-cell neoplasm. N. Engl J. Med 299:1215–1220.PubMedCrossRefGoogle Scholar
  203. Zur Hausen, H. (1975). Oncogenic herpes virus. Bio- chem. Biophys. Acta 417:25–53.Google Scholar
  204. Zur Hausen, H., Schulte-Holthausen, T., Klein, E., et al. (1970). EBV DNA in biopsies of Burkitt tumors and anaplastic carcinomas. Nature 228:1056–1058.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Ian Magrath

There are no affiliations available

Personalised recommendations