Advertisement

The Molecular Hamiltonian

  • Ralph E. Christoffersen
Part of the Springer Advanced Texts in Chemistry book series (SATC)

Abstract

In Chapter 4 a set of postulates for the study of quantum mechanics was introduced, including the Schrödinger equation plus a prescription for forming the quantum mechanical Hamiltonian for a time-independent, field-free, conservative system in which relativistic effects are ignored. Although such a Hamiltonian is indeed a restricted one compared to the circumstances found in many experiments, use of it has allowed a number of important principles to be established using one-dimensional and other examples, as well as the introduction of angular momentum from a quantum mechanical point of view.

Keywords

Relativistic Effect External Field Dirac Equation Hamiltonian Operator Schrodinger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    N. Bohr, Z. Phys. 6, 1–9 (1921)CrossRefGoogle Scholar
  2. N. Bohr, Proc. Cambridge Philos. Soc. (Suppl.) 22 (1924).Google Scholar
  3. 2.
    D. Bohm, Quantum Theory, Prentice-Hall, NY, 1951Google Scholar
  4. J. L. Powell and B. Crasemann, Quantum Mechanics, Addison-Wesley, Reading, MA, 1961Google Scholar
  5. 3.
    E. R. Peck, Electricity and Magnetism, McGraw-Hill, NY, 1953, p. 201Google Scholar
  6. C. A. Coulson, Electricity,Interscience/Oliver and Boyd, Edinburgh, 1953Google Scholar
  7. 8.
    J. C. Slater, Quantum Theory of Atomic Structure, Vol. 2, McGraw-Hill, New York, 1960Google Scholar
  8. 10.
    R. C. Tolman, Relativity, Thermodynamics, and Cosmology, Oxford University Press, New York, 1934.Google Scholar
  9. 11.
    H.A. Bethe and E. E. Saltpeter, Quantum Mechanics of One-and Two-Electron Atoms,Springer-Verlag, Berlin, 1957Google Scholar
  10. 18.
    P. A. M. Dirac, Quantum Mechanics, Oxford University Press, Oxford England, 1958Google Scholar
  11. 21.
    R. Shankar, Principles of Quantum Mechanics, Plenum Press, New York, 1985Google Scholar
  12. 22.
    H. A. Bethe and E. E. Saltpeter, Quantum Mechanics of One-and Two-Electron Atoms, Springer-Verlag, Berlin, 1957Google Scholar
  13. 24.
    W. Pauli, Z. Phys. 43, 601 (1927)CrossRefGoogle Scholar
  14. H. A. Bethe and E. E. Saltpeter, Quantum Mechanics of One-and Two-Electron Atoms, Springer-Verlag, Berlin, 1957Google Scholar
  15. 25.
    A. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance, Harper Row, New York, 1967Google Scholar
  16. 27.
    D. P. Slichter, Principles of Magnetic Resonance, Harper Row, New York, 1963Google Scholar
  17. C. P. Slichter, Principles of Magnetic Resonance, Harper Row, New York, 1963, pp. 238–243Google Scholar
  18. J. A. Pople, W. G. Schneider and H. I. Bernstein, High-Resolution Nuclear Magnetic Resonance, McGraw-Hill, NY, 1959.Google Scholar
  19. 28.
    M. Born and J. R. Oppenheimer, Ann. Phys. 84, 457 (1927)CrossRefGoogle Scholar
  20. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, London, 1954Google Scholar
  21. M. Born, Nachr. Akad. Wiss. Göttigen, 1 (1951).Google Scholar
  22. 30.
    A. Fröman, J. Chem. Phys. 36, 1490 (1962)CrossRefGoogle Scholar
  23. D. W. Jepsen and J. O. Hirschfelder, J. Chem. Phys. 32, 1323 (1960).CrossRefGoogle Scholar
  24. 31.
    J. O. Hirschfelder and W. J. Meath, Adv. Chem. Phys. 12, 3–106 (1967).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Ralph E. Christoffersen
    • 1
  1. 1.The Upjohn CompanyKalamazooUSA

Personalised recommendations