The Hydrogen Atom, Rigid Rotor, and the H2+ Molecule

  • Ralph E. Christoffersen
Part of the Springer Advanced Texts in Chemistry book series (SATC)


After developing the notions of angular momentum in the previous chapter, we are now ready to use these ideas to help solve some important applications. As a first example, we shall examine the hydrogen atom and hydrogen-like atoms. It should be noted that the hydrogen atom is not only an important historical contribution to theoretical chemistry. As we shall see later, a substantial number of the qualitative and quantitative concepts that are used concerning complex atoms and molecules are couched in terms of hydrogenic orbitals. Consequently, it is of importance to study the eigenfunctions and associated eigenvalues of the hydrogen atom in some detail.1


Hydrogen Atom Orbital Angular Momentum Diatomic Molecule Rigid Rotor Schrodinger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Bauder and C. Itzykson, Rev. Mod. Phys., 838, 330 (1966).Google Scholar
  2. 2.
    H. A. Bethe and E. E. Saltpeter, Quantum Mechanics of One-and Two-Electron Atoms, Springer-Verlag, Berlin, 1957.Google Scholar
  3. 4.
    H. Shull and G. G. Hall, Nature (London), 184, 1559 (1959).CrossRefGoogle Scholar
  4. 6.
    H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry, John Wiley, New York, 1944.Google Scholar
  5. 8.
    R. E. Powell, J. Chem. Ed., 45 (1968).Google Scholar
  6. E. A. Ogryzlo, J. Chem. Ed., 42, 150 (1965).Google Scholar
  7. I. Cohen, J. Chem. Ed., 40, 256 (1963).CrossRefGoogle Scholar
  8. 9.
    M. Czerny, Z. Phys., 34, 227 (1925).CrossRefGoogle Scholar
  9. G. Herzberg, Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules, Van Nostrand, Princeton, NJ, 1950, p. 58.Google Scholar
  10. 11.
    O. Burran, Kgl. Danske Videnskab. Selskab. Mat. Fys. Medd., 7, (14), 1 (1927).Google Scholar
  11. 15.
    J. A. Stratton, P. M. Morse, L. J. Chu, and R. A. Hunter, Elliptic, Cylinder, and Spheroidal Wavefunctions, John Wiley, New York, 1941.Google Scholar
  12. E. A. Hylleraas, Z. Phys., 71, 739 (1931).Google Scholar
  13. 16.
    G. Jaffe, Z. Phys., 87, 535 (1934).CrossRefGoogle Scholar
  14. D. R. Bates, K. Ledsham, and A. L. Stewart, Phil. Trans. R. Soc. (London), A246, 215 (1954).CrossRefGoogle Scholar
  15. E. M. Roberts, M. R. Foster, and F. F. Selig, J. Chem. Phys., 37, 485 (1962).CrossRefGoogle Scholar
  16. H. Wind, J. Chem. Phys., 42, 2371 (1965).CrossRefGoogle Scholar
  17. J. L. Schaad and W. V. Hicks, J. Chem. Phys., 53, 851 (1970).CrossRefGoogle Scholar
  18. 19.
    J. von Neumann and E. Wigner, Z. Phys., 30, 467 (1929).Google Scholar
  19. E. Teller, J. Chem. Phys., 41, 109 (1937).CrossRefGoogle Scholar
  20. 21.
    E. Teller, J. Chem. Phys., 41, 109 (1936).Google Scholar
  21. 23.
    F. L. Filar, Elementary Quantum Chemistry, McGraw-Hill, New York, 1968, p. 463.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Ralph E. Christoffersen
    • 1
  1. 1.The Upjohn CompanyKalamazooUSA

Personalised recommendations