Advertisement

Computational Techniques for Many-Electron Systems Using Single Configuration Wavefunctions

  • Ralph E. Christoffersen
Part of the Springer Advanced Texts in Chemistry book series (SATC)

Abstract

In the last chapter we found that one-electron orbitals can be used as a basis for describing multielectron systems. Furthermore, the use of Slater determinants of these one-electron orbitals forms a convenient means of satisfying the Pauli Exclusion principle as well as creating eigenfunctions of operators such as S2, L2, etc. In this chapter and the next we shall develop these ideas further in ways that are important both from a conceptual and practical point of view.

Keywords

Spin Orbital Molecular Electrostatic Potential Freeze Orbital Open Shell System Orbital Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. R. Hartree, Proc. Cambridge Philos. Soc., 24, 89 (1928);CrossRefGoogle Scholar
  2. V. Fock, Z. Physik, 61, 126 (1930).CrossRefGoogle Scholar
  3. S. M. Blinder, Am. J. Phys., 33, 431 (1965)CrossRefGoogle Scholar
  4. 19.
    T. A. Koopmans, Physica, 1, 104 (1933).CrossRefGoogle Scholar
  5. 20.
    This definition was suggested by P. 0. Löwdin, and has found widespread acceptance and use. See P. O. Löwdin, Adv. Chem. Phys., 2, 207, (1959).Google Scholar
  6. 23.
    For additional discussion of ionization potential studies on molecular systems, see L. Radom, Modern Theoretical Chemistry, Volume 4, Plenum Press, New York, 1977, pp. 333–356, and M. E. Schwartz, Modern Theoretical Chemistry, Volume 4, Plenum Press, New York, 1977, pp. 357–380; see also K. Wittel and S. P. McGlynn, Chem. Rev., 77, 745–771 (1977).Google Scholar
  7. 25.
    R. S. Mulliken, Rev. Mod. Phys., 14, 204 (1942).CrossRefGoogle Scholar
  8. 26.
    A. D. Walsh, J. Chem ; Soc., 2260 (1953) and following articles; see also R. J. Buenker and S. D. Peyerimhoff, Chem. Rev., 74, 127–188 (1974).Google Scholar
  9. 28.
    In the following discussion, experimental dissociation energies will in general be taken from G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules,D. Van Nostrand, New York, 1950.Google Scholar
  10. 31.
    Since we have seen that the total energy is not equal simply to a sum of orbital energies [Eq. (1136)], predicting geometries only on the basis of MO energy considerations is not expected to be satisfactory. However, cancellation of errors and other effects occur [e. g., see R. J. Buenker and S. D. Peyerimhoff, Chem. Rev.,74, 127–188 (1974)] that allow rather elementary approaches as described here to be useful in a number of cases.Google Scholar
  11. 32.
    Inner shell electrons of “heavy atoms” are ignored in these discussions, since they are not expected to affect molecular geometry.Google Scholar
  12. 33.
    See R. J. Buenker and S. D. Peyerimhoff, Chem. Rev., 74, 127–188 (1974) for a review of many such studies.Google Scholar
  13. 34.
    See G. G. Hall, Proc. R. Soc. (London), A205, 541 (1951), and C. C. J. Roothaan, Rev. Mod. Phys., 23, 69 (1951).Google Scholar
  14. 41.
    The idea that electrons should be considered as belonging to the molecule as a whole, i. e., the concept of “molecular orbitals,” was developed early in the history of quantum mechanics by Robert Mulliken and others. See R. W. Mulliken, Phys. Rev.,32, 186, 388, 761 (1928), E. Hund, Z. Physik,51, 759 (1928) and Z. Elektrochem.,34, 437 (1928), and J. E. Lennard-Jones, Trans. Faraday Soc.,25, 688 (1929). For an excellent review and tribute to Mulliken’s contributions, see P. O. Löwdin and B. Pullman, eds., Molecular Orbitals in Chemistry, Physics, and Biology, Academic Press, New York, 1964. For initial discussions of MO theory applied to H2, see Section 10–1.Google Scholar
  15. 47.
    Depending on the system under consideration as well as the initial choice of coefficients, it is possible that the iterative procedure may not converge, but oscillate or even diverge. Even in the latter cases, damping or extrapolation techniques are available, which usually result in convergence for closed shell problems. See, for example, B. O’Leary, B. J. Duke, and J. E. Eilers, Adv. Quantum Chem., 9, 1–68 (1975), and V. R. Saunders and I. H. Hillier, Int. J. Quantum. Chem., 7, 699–705 (1973). For examples of methods useful for initial charge and bond order matrix choice, see J. H. Letcher, I. Assar, and J. R. Van Wazer, Int. J. Quantum Chem., 56, 451 (1972), J. Letcher, J. Chem. Phys., 54, 3215 (1971), L. L. Shipman and R. E. Christoffersen, Chem. Phys. Letters, 15, 469 (1972).Google Scholar
  16. 51.
    S. F. Boys, Proc. Roy. Soc. (London), A200, 542–554 (1950).Google Scholar
  17. 53.
    For an example of a procedure that can be used to obtain initial estimates for charge and bond order matrices for orbitals of the type used here, see L. L. Shipman and R. E. Christoffersen, Chem Phys. Letters, 15, 469–474 (1972).Google Scholar
  18. 56.
    For an excellent review of available basis sets, see E. R. Davidson and D. Feller, Chem. Rev., 86, 681–696 (1986). The discussion in this section draws heavily from that analysis. See also S. Huzinaga, Comp. Phys. Rep., 2, 279 (1985) and S. Wilson, Methods of Computational Physics, G. H. Dierksen and S. Wilson (eds.), Reidel, Dordrecht, The Netherlands, 1983; T. H. Dunning, Jr., J. Chem. Phys., 53, 2382 (1970); T. H. Dunning, Jr. and P. J. Hay, Methods of Electronic Structure Theory, Volume 3, Plenum Press, New York, 1977, pp. 1–28; A. A. Frost, Methods of Electronic Structure Theory, Volume 3, Plenum Press, New York, 1977, pp. 29–50; S. Wilson, Adv. Chem. Phys., 67, 429 (1987). In addition, a number of detailed tabulations of basis orbitals are also available, including R. Poirer, R. Kari, and I. G. Csizmadia, Handbook of Gaussian Basis Sets, Elsevier Science, 1985; S. Huzinaga, H. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai, and H. Tatewaki, Gaussian Basis Sets of Molecular Calculations, Elsevier, Amsterdam, 1984; and W. J. Hehre, L. Radom, P. v R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley-Interscience, New York, 1986.Google Scholar
  19. 58.
    H. Shull and P. O. Löwdin, J. Chem. Phys.,23, 1362 (1955). These studies were not restricted to Hartree-Fock theory and, except for basis set limitations, could have achieved the exact result at least in principle.Google Scholar
  20. 59.
    See P. O. Löwdin, Adv. Chem. Phys.,2, 207 (1959) for a review of basis sets such as these.Google Scholar
  21. 61.
    For an example of application of such a basis to a small molecule system (H3) see R. E. Christoffersen, J. Chem. Phys., 41, 960 (1964). For application to diatomics and other molecules, see W. G. Richards, T. E. H. Walker and R. K. Hinkley, A Bibliography of Ab Initio Molecular Wavefunctions, Oxford University Press, Oxford, 1971; see also the Supplements for 1970–1973 and for 1974–1977, Oxford University Press, and E. Clementi, IBM J. Res. Dev., 9, 2 (1965), plus E. Clementi and C. Roetti, Atom. Data Nuclear Data Tables, 14, 177 (1974).Google Scholar
  22. 62.
    For examples of techniques devised for STO integral evaluation see, for example, F. E. Harris, Adv. Chem. Phys., 13, 205 (1967); R. E. Christoffersen and K. Ruedenberg, J. Chem. Phys., 49, 4825 (1968).Google Scholar
  23. 63.
    S. F. Boys, Proc. R. Soc. (London), A200, 542–554 (1968).Google Scholar
  24. 65.
    For reviews of techniques that can be used for Gaussian integral evaluation see, for example, I. Shavitt, Methods Comput. Phys., 3, 1–45, (1963); V. R. Saunders, in Methods in Computational Molecular Physics, G. H. F. Diercksen and S. Wilson (eds.), D. Reidel, Boston, 1983, pp. 1–36, D. Hegarty and G. Van der Velde, Int. J. Quantum Chem., 23, 1135–1153 (1983).Google Scholar
  25. 67.
    S. Huzinaga, J. Chem. Phys., 42, 1293–1302 (1965); see also K. O. 0-Ohata, H. Taketa, and S. Huzinaga, J. Phys. Soc., Japan, 21, 2306 (1966).Google Scholar
  26. 68.
    K. Ruedenberg, R. C. Raffenetti and R. D. Bardo, Energy Structure and Reactivity, Proceedings of the 1972 Boulder Conference, John Wiley, New York, 1973, p. 164; see also R. D. Bardo and K. Ruedenberg, J. Chem. Phys., 60, 918 (1974).Google Scholar
  27. 69.
    See, for example, S. Huzinaga, M. Klobukowski, and H. Tatewaki, Can. J. Chem., 63, 1812 (1985); D. M. Silver and W. C. Nieuwpoort, Chem. Phys. Lett., 57, 421 (1978); D. M. Silver, S. Wilson, and W. C. Nieuwpoort, Int. J. Quantum Chem., 14, 635 (1978); E. Clementi and G. Corongiu, Chem. Phys. Lett., 90, 359 (1982).Google Scholar
  28. 70.
    J. L. Whitten, J. Chem. Phys., 39, 349 (1963); 44, 359 (1966).Google Scholar
  29. 72.
    See, for example, B. Roos and P. Siegbahn, Theoret. Chim. Acta, 17, 208 (1970); T. H. Dunning, Jr., J. Chem. Phys., 55, 3958–3966 (1971); I. Abscar and J. R. vanWazer, Chem. Phys. Letters, 11, 310 (1971); P. C. Hariharan and J. A. Pople, Theoret. Chim. Acta, 28, 213 (1973); R. Alrichs, F. Keil, H. Lischka, B. Zurawski, and W. A. Kutzelnigg, J. Chem. Phys., 63, 4685 (1975); T. H. Dunning and P. J. Hay, Modern Theoretical Chemistry, Volume 3, H. F. Schaefer III (ed.), Plenum Press, New York, 1977, p. 1; M. Keeton and D. P. Santry, Chem Phys. Lett., 1, 105 (1970).Google Scholar
  30. 74.
    For initial development and application of such orbitals see, for example. H. Preuss, Z. Naturforsch,11,283 (1956); A. A. Frost, J. Chem. Phys.,47, 3707–3714 (1964); J. Am. Chem. Soc.,89, 3064 (1967); R. E. Christoffersen and G. M. Maggiora, Chem. Phys. Letters,3,419 (1969).Google Scholar
  31. 75.
    R. E. Christoffersen and G. M. Maggiora, Chem. Phys. Lett., 3, 419–423 (1969); R. E. Christoffersen, Adv. Quantum Chem., 6, 333 (1972); G. M. Maggiora and R. E. Christoffersen, J. Am. Chem. Soc., 98, 8325 (1976); D. Spangler and R. E. Christoffersen, Int. J. Quantum Chem., Quantum Biol. Symp., 5, 127 (1978); Int. J. Quantum Chem., 17, 1075 (1980).Google Scholar
  32. 76.
    A fifth FSGO is also placed on the C nucleus to describe the inner schell electrons, but has been omitted from the figure for simplicity.Google Scholar
  33. 77.
    See, for example, T. H. Dunning, Jr. and P. J. Hay, Methods of Electronic Structure, Volume 3, H. F. Schaefer III, (ed.), Plenum Press, New York, 1977, pp. 1–27; see also W. L. Hunt and W. A. Goddard III, Chem. Phys. Lett., 3, 414 (1969).Google Scholar
  34. 78.
    Several authors have suggested such procedures, i. e., E. Clementi and D. R. Davis, J. Comput. Phys., 1, 223 (1966); J. L. Whitten, J. Chem. Phys., 44, 359 (1966); H. Taketa, S. Huzinaga and K. 0-ohata, J. Phys. Soc. Japan, 21, 2313 (1966).Google Scholar
  35. 79.
    S. Huzinaga, J. Chem. Phys., 42, 1293–1302 (1965).CrossRefGoogle Scholar
  36. 80.
    T. H. Dunning, Jr., J. Chem. Phys., 53, 2823–2833 (1970); J. Chem. Phys., 55, 716–723 (1971).Google Scholar
  37. 82.
    For a compilation of a wide variety of Gaussian orbital exponents and contraction coefficients, see R. Poirier, R. Kari and I. G. Csizmadia, Handbook of Gaussian Basis Sets, Elsevier Science, New York, 1985.Google Scholar
  38. 83.
    W. J. Hehre, R. F. Stewart, and J. A. Pople, Symp. Faraday Soc., 2, 15 (1968); J. Chem. Phys., 51, 2657 (1969); W. J. Hehre, R. Ditchfield, R. F. Stewart, and J. A. Pople, J. Chem. Phys., 52, 2769 (1970); W. J. Pietro, B. A. Levi, W. J. Hehre, and R. F. Stewart, Inorg. Chem., 19, 2225 (1980); W. J. Pietro and W. J. Hehre, J. Comput. Chem., 4, 241 (1981); J. A. Pople, in Modern Theoretical Chemistry, Volume 4, H. F. Schaefer III (ed.), Plenum, New York, 1976. For earlier reports using this approach see K. 0-ohata, H. Taketa, and S. Huzinaga, J. Phys. Soc. Japan, 21, 2306 (1966) and C. M. Reeves and R. Fletcher, J. Chem. Phys., 42, 4073 (1965).Google Scholar
  39. 84.
    It is possible to use methods other than least-squares fitting to obtain contracted GTO expansions of STOs. For example, energetic criteria were applied in a variational approach by S. Huzinaga, J. Chem. Phys., 42, 1293 (1965); see also, S. Huzinaga, J. Andzelm, M. Klobukowski, E. RadzioAndzelm, Y. Sakar and H. Tatewaki, Gaussian Basis Sets for Molecular Calculations, Elsevier, New York, 1984. For comparison of this approach with the least squares approach, see M. Klessinger, Theoret. Chim. Acta, 15, 353 (1969).Google Scholar
  40. 85.
    See, for example, E. R. Davison and D. Feller, Chem. Rev., 86, 681–696 (1986).Google Scholar
  41. 87.
    P. Pulay, G. Forarasi, F. Pang, and J. E. Boggs, J. Am. Chem. Soc., 101, 2550 (1979); J. S. Binkley, J. A. Pople, and W. J. Hehre, J. Am. Chem. Soc., 102, 939 (1980); M. S. Gordon, J. S. Binkley, J. A. Pople, J. Pietro, and W. J. Hehre, J. Am. Chem. Soc., 104, 2797 (1982).Google Scholar
  42. 89.
    See, for example, D. J. DeFrees, B. A. Levi, J. S. Binkley, and J. A. Pople, J. Amer. Chem. Soc., 101, 4085 (1979).Google Scholar
  43. 90.
    Extensive bibliographys of ab initio calculations such as these have been given in several places. See, for example, M. Krauss, Compendium of Ab Initio Calculations of Molecular Energies and Properties,NBS Tech. Note 438, U.S. Dept. of Commerce, Washington, D.C., 1967. See also W. G. Richards, T. E. H. Walker, and R. K. Hinkley, A Bibliography of Ab Initio Molecular Wave Functions,Oxford University Press, Oxford, 1971. Supplements for 1970–73 and 1974–77 have also been published. See also K. Ohno and K. Morokuma, Quantum Chemistry Literature Data Base,Elsevier, New York, 1982.Google Scholar
  44. b.
    J. M. Schulman and D. N. Kaufman, J. Chem. Phys., 53, 477 (1970).CrossRefGoogle Scholar
  45. c.
    W. Kolos and L. Wolniewicz, J. Chem. Phys., 49, 404 (1968).CrossRefGoogle Scholar
  46. d.
    P. C. Hariharan and J. A. Pople, Theoret. Chim. Acta, 28, 213 (1973).CrossRefGoogle Scholar
  47. e.
    W. Meyer, J. Chem. Phys., 58, 1017 (1973).CrossRefGoogle Scholar
  48. f.
    A. Rauk, L. C. Allen, and E. Clementi, J. Chem. Phys., 52, 4133 (1970).CrossRefGoogle Scholar
  49. g.
    B. J. Rosenberg and I. Shavitt, J. Chem. Phys., 63, 2162 (1975).CrossRefGoogle Scholar
  50. h.
    P. E. Cade and W. Huo, J. Chem. Phys., 47, 614 (1967).CrossRefGoogle Scholar
  51. i.
    P. E. Cade, K. D. Sales, and A. C. Wahl, J. Chem. Phys., 44, 1973 (1966).CrossRefGoogle Scholar
  52. j.
    D. B. Neumann and J. W. Moskowitz, J. Chem. Phys., 50, 2216 (1969).CrossRefGoogle Scholar
  53. k.
    G. Das and A. C. Wahl, J. Chem. Phys., 44, 87 (1966);CrossRefGoogle Scholar
  54. A. C. Wahl, J. Chem. Phys., 41, 2600 (1966).CrossRefGoogle Scholar
  55. 91.
    The following discussion provides examples of the general principle that Hartree-Fock wavefunctions will give one-electron properties that are correct to first order. See, for example, M. Cohen and A. Dalgarno, Proc. Phys. Soc. London, 77, 748–750 (1961); K. F. Freed, Chem. Phys. Lett., 2, 255–256 (1968); J. Goodisman and W. Klemperer, J. Chem. Phys., 38, 721–725 (1963). See E. R. Davidson and D. Feller, Chem. Rev., 86, 681 (1986) Experimental ionization potentials. See R. Colle, R. Montagnani, P. Riani, and O. Salvetti, Theoret. Chim. Acta, 49, 37 (1978). See also M. Robin, N. Kuebler and C. R. Brundle, Electron Spectroscopy, D. A. Shirely, (ed.), North Holland, Amsterdam, 1972, pp. 351–378.Google Scholar
  56. 92.
    See E. R. Davidson and D. Feller, Chem. Rev.,86, 681 (1986) for further discussion of the basis sets and discussion of the results. Values listed are in atomic units, and are measured relative to the center of mass.Google Scholar
  57. 93.
    See, for example, R. E. Christoffersen, D. Spangler, G. G. Hall, and G. M. Maggiora, J. Am. Chem. Soc.,95, 8526–8536 (1973).Google Scholar
  58. 94.
    J. Lin, C. Yu, S. Peng, I. Akiyama, K. Li, L. K. Lee, and P. R. LeBreton, J. Phys. Chem., 84, 1006–1012 (1980) and references contained therein. For a recent example, see J. P. Boutique, J. Riga, J. J. erbist, J. G. Fripiat, R. C. Haddon, and M. L. Kaplan, J. Am. Chem. Soc., 106, 312318 (1984).Google Scholar
  59. 96.
    See, for example, A. C. Wahl, Science,151, 961 (1966) for a series of charge density contour maps for homonuclear diatomic molecules, both for individual MOs and the total charge density. Figure 11.8. Total charge density contour map for LiF. [From B. J. Ransil and J.J. Sinai, J. Chem. Phys.,46, 4050–4074 (1967)]. Electron density is expressed in electrons per (a. u.)3 and spatial coordinates and expressed in Bohrs.Google Scholar
  60. 97.
    R. S. Mulliken, J. Chem. Phys.,3, 573 (1935); 23, 1833, 1841, 2338, 2343 (1955); 36, 3428 (1962); J. Chim. Phys.,46, 497, 675 (1949). See also P. 0. Löwdin, J. Chem. Phys.,18, 365 (1950) for an alternative formulation.Google Scholar
  61. 98.
    For examples of studies designed to remove some of the difficulties of the Mulliken analysis, see R. E. Christoffersen and K. A. Baker, Chem. Phys. Lett., 8, 4–9 (1971); see also B. T. Thole and P. T. vanDuijnen, Theoret. Chim. Acta, 63, 209–222 (1983); and F. Fliazar, Charge Distribution and Chemical Effects, Springer-Verlag, Berlin, 1983.Google Scholar
  62. 99.
    F. O. Ellison and H. Shull, J. Chem. Phys., 21, 1420 (1953); 23, 2348 (1955).Google Scholar
  63. 100.
    See, for example, H. Weinstein, R. Osman, J. P. Green, and S. Topiol, in Chemical Applications of Atomic and Molecular Electrostatic Potentials, P. Politzer and D. G. Truhlar (eds.), Plenum Press, New York, 1981, pp. 309–334. See also R. Lavery and A. Pullman, in New Horizons of Quantum Chemistry, P. O. Löwdin and B. Pullman, (eds.), D. Reidel, Dordrecht, Holland, 1983, pp. 439–451.Google Scholar
  64. 101.
    See, for example, H. Weinstein, R. Osman, S. Topiol and J. P. Green, Ann. N.Y. Acad. Sci., 367, 434–451 (1981).Google Scholar
  65. 102.
    E. Scrocco and J. Tomasi, Topics Curr. Chem., 42, 97–120 (1973); R. Bonaccorsi, A. Pullman, E. Scrocco and J. Tomasi, Theoretic. Chim. Acta., 24, 52 (1972).Google Scholar
  66. 103.
    B. Mely and A. Pullman, Theoret. Chim. Acta, 13, 278 (1969).CrossRefGoogle Scholar
  67. 104.
    J. J. Christianson, J. T. Rytting, and R. M. Izatt, Biochemistry, 9, 4907 (1970); B. C. Pal, Biochemistry, 1, 558 (1962).Google Scholar
  68. 105.
    The ideas presented here apply only to FSGOs. To see how higher angular momentum basis orbitals can be utilized in this approach see, for example, D. Martin and G. G. Hall, Theoret. Chico. Acta, 59, 281 (1981), and G. G. Hall, Adv. Atom. Mol. Phys., 20, 41 (1985).Google Scholar
  69. 107.
    The analysis here follows the work of G. G. Hall, Chem. Phys. Lett., 20, 501, (1973).Google Scholar
  70. 108.
    L. L. Shipman, Chem. Phys. Lett., 31, 361 (1975).Google Scholar
  71. 110.
    These calculations were carried out by J. D. Petke, Chem. Phys. Lett., 126, 26 (1986).Google Scholar
  72. 111.
    See, for example, C. M. Smith and G. G. Hall, Int. J. Quantum Chem., 31, 685 (1987).Google Scholar
  73. 112.
    A number of approaches to obtaining localized orbitals according to various criteria have been proposed, including F. Hund, Z. Phys., 73, 1 (1931); Z. Phys., 565 (1932); C. A. Coulson, Trans. Faraday Soc., 38, 433 (1942); J. E. Lennard-Jones, Proc. R. Soc. (London), A198, 1, 14 (1949); G. G. Hall and J. E. Lennard-Jones, Proc. R. Soc. (London), A202, 155 (1950); Proc. R. Soc. (London), A205, 357 (1951); J. E. Lennard-Jones and J. A. Pople, Proc. R. Soc. (London), A202, 166 (1950); Proc. R. Soc. (London), A210, 190 (1951); J. M. Foster and S. F. Boys, Rev. Mod. Phys., 32, 300 (1960); C. Edmiston and K. Ruedenberg, Rev. Mod. Phys., 32, 457 (1963); J. Chem. Phys., 43, 597 (1965); in Quantum Theory of Atoms, Molecules and the Solid State, P. 0. Löwdin (ed.), Academic Press, New York, 1966, p. 263; S. F. Boys, in Quantum Theory of Atoms, Molecules and the Solid State, P. 0. Löwdin (ed.), Academic Press, New York, 1966, p. 253.Google Scholar
  74. 113.
    See Chapter 10 and the discussion involving Eqs. (10–280)-(10–284).Google Scholar
  75. See, for example, E. Switkes, R. M. Stevens, and W. N. Lipscomb, J. Chem. Phys., 51, 2085 (1969), and Fig. 11.10.Google Scholar
  76. 115.
    H. C. Longuet-Higgins, J. Chico. Phys., 46, 175 (1949); J. R. Inst. Chem., 77, 197 (1953).Google Scholar
  77. 119.
    See, for example, O. Sinanouglu, Proc. Natl. Sci. Acad. U.S.A. 47, 1217 (1961).Google Scholar
  78. 120.
    See for example, D. J. DeFrees, K. Raghavachari, H. B. Schlegel, and J. A. Pople, J. Am. Chem. Soc., 104, 5576–5580 (1982).Google Scholar
  79. 121.
    W. Kolos and L. Wolniewicz, J. Chem. Phys., 49, 404–410 (1968). This wavefunction will be discussed in greater detail in Section 12–2B.Google Scholar
  80. 124.
    J. C. Slater, Phys. Rev., 35, 210 (1930).CrossRefGoogle Scholar
  81. 125.
    J. A. Pople and R. K. Nesbet, J. Chem. Phys., 22, 571 (1954). See also G. Berthier, Compt. Rend. Acad. Sci., 238, 91 (1954); J. Chim. Phys., 51, 363 (1954).Google Scholar
  82. 132.
    K. Hirao and H. Nakatsuji, J. Chem. Phys., 59, 1457 (1973); R. Carbo, R. Gallifa, and J. M. Riera, Chem. Phys. Lett., 30, 43 (1975); R. Carbo and J. M. Riera, A General SCF Theory, Lecture Notes in Chemistry, Volume 5, Springer-Verlag, Berlin, 1978.Google Scholar
  83. 133.
    The first paper in this area was that of C. C. J. Roothaan, Rev. Mod. Phys., 32, 179 (1960). See also S. Huzinaga, Phys. Rev., 120, 866 (1960); 122, 131 (1961); J. Chem. Phys., 51, 3971 (1969); F. W. Birss and S. Fraga, J. Chem. Phys., 38, 2562 (1963); 40, 3203, 3207, 3212, (1964); W. Laidlaw and R. W. Birss, Theoret. Chim. Acta, 2, 181 (1964); W. A. Goddard III, T. H. Dunning, and W. J. Hunt, Chem. Phys. Lett., 4, 231 (1969); D. Peters, J. Chem. Phys., 57, 4351 (1972); R. Caballol, R. Carbo, R. Gallifa, and J. M. Riera, Int. J. Quantum Chem., 8, 373 (1974); K. Hirao, J. Chem. Phys., 60, 3215 (1974); M. F. Guest and V. R. Saunders, Mol. Phys., 28, 819 (1974); R. Albat and N. Gruen, Chem. Phys. Lett., 18, 572 (1973); H. J. Silverstone, J. Chem. Phys., 67, 4172 (1977); E. R. Davidson, Chem. Phys. Lett., 21, 565 (1973); H. L. Hsu, E. R. Davidson, and R. M. Pitzer, J. Chem. Phys., 65, 609, (1976).Google Scholar
  84. 136.
    It should be noted that, while not discussed here, excited state SCF studies are complicated further when the excited state symmetry is the same as the ground state. For examples of approaches that are applicable in such cases, see H. Hsu, E. R. Davidson, and R. M. Pitzer, J. Chem. Phys., 65, 609 (1976); T. P. Hamilton and P. Pular, J. Chem. Phys., 84, 5728 (1986); R. Colle, A. Fortunelli, and O. Salvetti, Theoret. Chim. Acta, 71, 467 (1987); E. R. Davidson and L. Z. Stenkamp, Int. J. Quantum Chem. Symp., 10, 21 (1976).Google Scholar
  85. 137.
    D. R. Yargony, H. F. Schaeffer III, and S. Rothenberg, J. Am. Chem. Soc., 96, 656–659 (1974). Data were obtained from the calculations of D. Yarkony, H. F. Schaefer III, and S. Ruthenberg, J. Am. Chem. Soc., 96, 656–659 (1974). The la, and 2a, orbitals have been omitted for convenience, since they are essentially oxygen is and carbon is orbitals. Data taken from L. C. Snyder and A. T. Amos, J. Chem. Phys., 42, 3670–3683 (1965). For C l Q = 24, while for C2 and C3, Q = 27 Gauss. The quantities p,d and a. are calculated using a single determinantal UHF wavefunction, while p„ and a, are the same quantities calculated from the UHF wavefunction after annihilation of higher spin components using Eq. (11–183).Google Scholar
  86. 138.
    H. M. McConnell, J. Chem. Phys., 24, 764 (1956);CrossRefGoogle Scholar
  87. S. J. Weissman, J. Chem. Phys., 25, 890 (1956);CrossRefGoogle Scholar
  88. R. Bersohn, J. Chem. Phys., 24, 1066 (1956).CrossRefGoogle Scholar
  89. 139.
    L. C. Synder and A. T. Amos, J. Chem. Phys., 42, 3670–3683 (1965).CrossRefGoogle Scholar
  90. 141.
    See, for example, P. O. Löwdin, Adv. Chem. Phys., 2, 207–322 (1959).Google Scholar
  91. 142.
    P. O. Löwdin, Phys. Rev., 97, 1509 (1955);CrossRefGoogle Scholar
  92. A. T. Amos and G. G. Hall, Proc. R. Soc. (London), A263, 483 (1961).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Ralph E. Christoffersen
    • 1
  1. 1.The Upjohn CompanyKalamazooUSA

Personalised recommendations