Supercritical Branching Random Fields. Asymptotics of a Process Involving the Past

  • Luis G. Gorostiza
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 9)


We consider a branching random field with immigration on Rd, described as follows. Initial particles appear at time t = 0 according to a Poisson random field with intensity measure γdx, γ ≧ 0, on a Borel set B⊂Rd. Immigrant particles appear according to a Poisson random field with intensity measure ßdxdt, ß ≧ 0, on a Borel set C⊂Rd × [0,∞). The two Poisson fields are independent. As time evolves, the particles independently migrate following standard Brownian motions during independent exponentially distributed lifetimes with parameter V, at the end of which they independently reproduce with a branching law {pn} n=0 (i.e. a particle branches into n particles with probability pn) having finite second moment; the mean and the second factorial moment of the branching law will be denoted m1 and m2 respectively. The offspring particles appear at the locations where their parent particles branched, and independently migrate, live and reproduce by the same laws. A more general model will be mentioned later on.


Standard Brownian Motion Factorial Moment Functional Central Limit Theorem Descendance Line Infinite Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.B. Athreya and P. Ney. “Branching Processes”. Springer-Verlag, New York, 1973.Google Scholar
  2. 2.
    T. Bojdecki and L.G. Gorostiza. Langevin equations for S’-valued Gaussian processes and fluctuation limits of infinite particle systems. Z.f. Wahrschein. (to appear).Google Scholar
  3. 3.
    P. Boulicaut. Convergence cylindrique et convergence étroite d’une suite des probabilités de Radon. Z.f. Wahrschein., Vol. 28, (1973), 43–52.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    D.A. Dawson and L.G. Gorostiza. Limit theorems for supercritical branching random fields. Math. Nachr., Vol. 118, (1984), 19–46.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    D.A. Dawson and B.G. Ivanoff. Branching diffusions and random measures. In “Branching Processes”, (A. Joffe and P. Ney, Eds.). Advances in Probability, Vol. 5, 61–103. Dekker, New York, 1978.Google Scholar
  6. 6.
    L.G. Gorostiza. Limites gaussiennes pour les champs aléatories ramifiés supercritiques. In “Aspects statistiques et aspects physiques des processus gaussiens”, 385–398. Editions du CNRS, Paris, 1981.Google Scholar
  7. 7.
    L. G. Gorostiza. Generalized Gaussian random solutions of certain evolution equations. In “Advances in Filtering and Optimal Stochastic Control”, (W.H. Fleming and L.G. Gorostiza, Eds.). Lecture Notes in Control and Inf. Sci., Vol. 42, (1982), 142–148.Google Scholar
  8. 8.
    L.G. Gorostiza. High density limit theorems for infinite systems of unscaled branching Brownian motions. Ann. Probab., Vol. 11, No. 2, (1982), 374–392.MathSciNetCrossRefGoogle Scholar
  9. 9.
    L.G. Gorostiza. Limit theorems for supercritical branching random fields with immigration. Tech. Rep. No. 64. Lab. Res. Stat. Probab., Carleton Univ.-Univ. of Ottawa, 1985.Google Scholar
  10. 10.
    L.G. Gorostiza and N. Kaplan. Invariance principle for branching random motions. Bol. Soc. Mat. Mex., Vol. 25, No. 2, (1980), 63–86.MathSciNetMATHGoogle Scholar
  11. 11.
    R. Holley and D.W. Stroock. Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motions. Publ. RIMS, Kyoto Univ., Vol. 14, (1981), 741–488.MathSciNetCrossRefGoogle Scholar
  12. 12.
    E. Wong and M. Zakai. Martingales and stochastic integrals for processes with multidimensional parameter. Z.f. Wahrschein., Vol. 29, (1974), 109–122.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Luis G. Gorostiza
    • 1
  1. 1.Centro de Investigación y de Estudios AvanzadosMéxico D.F.México

Personalised recommendations