On the Hydrodynamic Limit of a Scalar Ginzburg-Landau Lattice Model: The Resolvent Approach

  • J. Fritz
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 9)


A d-dimensional lattice system of continuous spins is considered, the evolution law is given by an infinite system of locally coupled stochastic differential equations. In view of the construction of the model, the evolution is reversible in time, and the mean spin satisfies a conservation law, thus we have a whole family of equilibrium Gibbs states parametrized by the associated chemical potential. The asymptotic behaviour of the system is investigated in the framework of hydrodynamic (Navier-Stokes) scaling. The initial, local equilibrium distribution is specified by letting the chemical potential of the equilibrium state be inhomogeneous in space. We show that the macroscopic fluctuations vanish in the hydrodynamic limit, and the limiting profile of the mean spin satisfies a nonlinear diffusion equation. Some very recent results and the main ideas of the proofs are summarized.


Local Equilibrium Initial Configuration Interact Particle System Resolvent Equation Zero Range Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aizenman, M: Private communication, 1986Google Scholar
  2. 2.
    Andjel, E.: Invariant measures for the zero range process. Ann. Prob. 10. (1982) 525–547.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Boldrighini, C. - Dobrushin, R.L. - Suhov, Yu. M: The hydrodynamic limit of a degenerate model of classical statistical physics. Usp. Mat. Nauk 35.4. (1980) 152 (Short communication, in Russian)Google Scholar
  4. 4.
    Boldrighini, C. - Dobrushin, R.L. - Suhov, Yu. M: One-dimensional hard rod caricature of hydrodynamics. Journ. Stat. Phys 31. (1983) 577–616.CrossRefGoogle Scholar
  5. 5.
    Brox, Th. - Rost, H: Equilibrium fluctuations of a stochastic particle system: The role of conserved quantities. Ann. Prob. 12. (1984) 742–759MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    De Masi, A. - Ianiro, N. - Pellegrinotti, S. - Presutti, E: A Survey of the Hydrodynamical Behaviour of Many-Particle Systems. Non-Equilibrium Phenomena II. Eds. Lebowitz, J.L. -Montroll, E.W., North-Holland Co. Amsterdam-New York 1984.Google Scholar
  7. 7.
    De Masi, A. - Ferrari, P.- Lebowitz, J.L.: Reaction-diffusion equations for interacting particle systems. Preprint 1986.Google Scholar
  8. 8.
    De Masi, A. - Presutti, E. - Vares, M.E.: Escape from the unstable equilibrium in a random process with infinitely many interacting particles. Preprint 1986.Google Scholar
  9. 9.
    Dobrushin, R.L: On the derivation of the equations of hydrodynamics, Lecture, Budapest 1978.Google Scholar
  10. 10.
    Dobrushin, R.L. - Siegmund-Schultze, R: The hydrodynamic limit for systems of particles with independent evolution. Math. Nachr. 105. (1982) 199–224.Google Scholar
  11. 11.
    Fabes, E: singular integrals and partial differential equations of parabolic type. Studia Math. XXVIII. (1966) 6–131.Google Scholar
  12. 12.
    Fabes, E: Private communication, 1986.Google Scholar
  13. 13.
    Fabes, E. - Riviere, N.M: Singular integrals with mixed homogenity. Studia Math. XXVII. (1966) 19–38.Google Scholar
  14. 14.
    Ferrari, P. - Presutti, E. - Vares, M.E: Hydrodynamics of a zero range model. Preprint 1984.Google Scholar
  15. 15.
    Fritz, J: Local stability and hydrodynamical limit of Spitzer’s one-dimensional lattice model. Commun. Math Phys. 86. (1983) 363–373.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fritz, J: On the asymptotic behaviour of Spitzer’s model for the evolution of one-dimensional point systems. Journ. Stat. Phys. 38. (1985) 615–647.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Fritz, J: The Euler equation for the stochastic dynamics of a one-dimensional continuous spin system. Preprint 1986.Google Scholar
  18. 18.
    Fritz, J. -Gärtner,J: The continuum limit of a one-dimensional stochastic gradient system is a nonlinear stochastic partial differential equation. In preparation.Google Scholar
  19. 19.
    Funaki, T: Private communication, 1986.Google Scholar
  20. 20.
    Guo, M. - Papanicolau, G: Bulk diffusion for interacting Brownian particles. In: Statistical Physics and Dynamical Systems. 41–48. Eds. Fritz, J.- Jaffe, A. -Szâsz, D. Birkhäuser, Basel-Boston New-York 1985.Google Scholar
  21. 21.
    Hohenberg, P.C. - Halperin, B.I: Theory of dynamic critical phenomena. Rev. Mod. Physics 49. (1977) 435.CrossRefGoogle Scholar
  22. 22.
    Kipnis, C. - Marchioro, C. — Presutti, E: Heat flow in an exactly solvable model. Journ. Stat. Phys. 22. (1982) 67.MathSciNetGoogle Scholar
  23. 23.
    Ma.S.K: Modern Theory of Critical Phenomena. Benjamin-Cummings, Reading, Mass. 1976.Google Scholar
  24. 24.
    Morrey, C.B.: On the derivation of the equations of hydrodynamics from statistical mechanics. Comm. Pure. Appl. Math. 8. (1955) 279–327.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Papanicolau, G. - Varadhan, S.R.S: Boundary value problems with rapidly oscillating coefficients. In: Random Fields Vol. II. 385–853, Eds. Fritz, J. - Lebowitz, J.L. - Szâsz, D, North Holland: Amsterdam-New York 1981.Google Scholar
  26. 26.
    Papanicolau, G. - Varandan, S.R.S: Ohrstein-Uhlenbeck processes in a random potential. Commun. Pure. Appl. Math. XXXVIII. (1985) 819–334.Google Scholar
  27. 27.
    Presutti, E. - Scacciatelli, E: Time evolution of a one-dimensional point system: a note on Fritz’s paper. Journ. Stat. Phys. 38. (1985) 64–654.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Rost, H: Non-equilibrium behaviour of a many-particle system: Density profile and local equilibrium. Z. Wahsch. verw. Geb. 58. 1981 ) 41.MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Rost, H: Hydrodynamik gekoppelter Diffusionen: Fluktuationen in Gleichgewicht. In: Dynamics and Processes. Eds., Blanchard, Ph.- Streit, L., Lecture Notes in Mathematik 1031, 97–107, Springer Verlag: Berlin-Heidelberg-New York 1983.Google Scholar
  30. 30.
    Rost, H: Diffusion de spheres dures dans la droite réelle: Comportement macroscopique et equilibre local. Lecture Notes in Mathematics 1059, 127–143, Eds. Azema, J. - Yor, M., Springer Verlag: Berlin-Heidelberg-New York 1984.Google Scholar
  31. 31.
    Rost, H: The Euler equation for the one-dimensional zero-range process. Lecture, Minneapolis, IMA, March 1986.Google Scholar
  32. 32.
    Spohn, H: Equilibrium fluctuations for some stochastic particle systems. In: Statistical Physics and Dynamical Systems 67–81. Eds. Fritz, J. - Jaffe, A. -Szész, D., Birkhaüser: Basel-Boston-Amsterdam 1985.Google Scholar
  33. 33.
    Spohn, H: Equilibrium fluctuations for interacting Brownian particles. Commun. Math. Phys. 103. (1966) 1–33.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Stroock, D.W. - Varadhan, S.R.S: Multidimensional Diffusion Processes. Springer Verlag: Berlin-Heidelberg-New York 1979.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • J. Fritz
    • 1
  1. 1.Mathematical Institute HASBudapestHungary

Personalised recommendations