Experiments on Suspensions of Interacting Particles in Fluids

  • P. M. Chaikin
  • W. D. Dozier
  • H. M. Lindsay
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 9)


A system of charged polystyrene spheres in aqueous suspension provides a well characterized way of studying the effects of interparticle interactions on the hydrodynamics of suspensions. We describe the origin of the potential characterizing these interactions and the experiments which are used to test the form of the potential. Techniques, such as light scattering and rheology, have provided a wealth of knowledge about the dynamics of these systems as a function of the density of particles and the strength of the interactions. In many cases the theoretical understanding of the results is lacking and one must treat the results phenomenologically. We summarize some of the more basic questions which remain to be answered.


Shear Modulus Electrolyte Concentration Diffusion Constant Colloidal Crystal Interparticle Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. J. Ackerson and N. A. Clark, Phys. Rev. Lett., 46 (1981), p. 123.CrossRefGoogle Scholar
  2. [2]
    B. J. Ackerson and N. A. Clark, Phys. Rev., A30 (1984), p. 906.CrossRefGoogle Scholar
  3. [3]
    S. Alexander, P. M. Chaikin, P. Grant, G. J. Morales, P. Pincus and D. Hone, J. Chem. Phys., 80 (1984), p. 5776.CrossRefGoogle Scholar
  4. [4]
    S. Alexander, P. M. Chaikain, D. Hone, P. Pincus and D. Schaefer, (to appear).Google Scholar
  5. [5]
    N. A. Clark, B. J. Ackerson, and T. W. Taylor, J. Phys. (Paris) Colloq., C3, 46 (1985), p. 137.Google Scholar
  6. [6]
    N. A. Clark, A. J. Huad, and B. J. Ackerson, Nature, 281 (1979), p. 5726.CrossRefGoogle Scholar
  7. [7]
    R. S. Crandall and R. Williams, Science, 198 (1977), p. 293.CrossRefGoogle Scholar
  8. [8]
    W. D. Dozier, H. M. Lindsay, and P. M. Chaikin, J. Physique, Colloque, 46, C3 (1985).Google Scholar
  9. [9]
    F. Gruner and W. Lehmann, J. Phys., Al2 (1979), p. L303.Google Scholar
  10. [10]
    F. Gruner and W. Lehmann, J. Phys., A15 (1982), p. 2847.Google Scholar
  11. [11]
    S. Hachisu, Y. Kobayashi and A. Kose, J. Colloid Interface Sci., 42 (1973), p. 342.CrossRefGoogle Scholar
  12. [12]
    W. Hess and R. Klein, Adv. Phys., 32 (1983), p. 173.MathSciNetCrossRefGoogle Scholar
  13. [13]
    P. A. Hiltner, Y. S. Papir and I. M. Kreiger, J. Phys. Chem., 75 (1971), p. 1881.CrossRefGoogle Scholar
  14. [14]
    R. L. Hoffman, Trans. Soc. Rheology, 16 (1972), p. 155.CrossRefGoogle Scholar
  15. [15]
    R. L. Hoffman, J. Coll. Int. Sci., 46 (1974), p. 491.Google Scholar
  16. [16]
    R. Klein and W. Hess, Farad. Disc. Chem. Soc., 76 (1983).Google Scholar
  17. [17]
    A. Kose, T. Osake, Y. Kobayashi, K. Takano, and S. Hachisu, J. Coll. Int. Sci., 44 (1973), p. 330.CrossRefGoogle Scholar
  18. [18]
    K. Kremer, M. Robbins, and G. Grest, (to appear).Google Scholar
  19. [19]
    I. M. Krieger, Adv. Colloid and Interface Science, 3 (1972), p. 111.CrossRefGoogle Scholar
  20. [20]
    F. A. Lindemann, Z. Phys., 11 (1910), p. 609.Google Scholar
  21. [21]
    H. M. Lindsay and P. M. Chaikin, J. Chem. Phys., 76 (1983), p. 3774.CrossRefGoogle Scholar
  22. [22]
    H. M. Lindsay and P. M. Chaikin, J. Phys. (Paris) Colloq., C3, 46 (1985), p. 269.Google Scholar
  23. [23]
    H. M. Lindsay, W. D. Dozier, P. M. Chaikin, R. Klein, and W. Hess, J. Phys. C (to appear).Google Scholar
  24. [24]
    W. van Megen and I. Snook, Adv. Coll. Int. Sci., 21 (1984), p. 119.CrossRefGoogle Scholar
  25. [25]
    T. Ohtsuki, A. Kishimoto, S. Mitaku, and K. Okeno, Jpn. J. Appl. Phys., 20 (1981), p. 509.CrossRefGoogle Scholar
  26. [26]
    P. Pieranski, Contemp. Phys., 24 (1983), p. 25.CrossRefGoogle Scholar
  27. [27]
    P. Pieranski, La Recherche, 17 (1986), p. 312.Google Scholar
  28. [28]
    D. W. Pohl, S. E. Schwarz and V. Irniger, Phys. Rev. Lett., 31 (1973), p. 32.CrossRefGoogle Scholar
  29. [29]
    F. Rondelez, H. Hervet, and W. Urbach, Chem. Phys. Lett., 41 (1978), p. 138.CrossRefGoogle Scholar
  30. [30]
    S. Ramaswamy and S. R. Renn, Phys. Rev. Lett., 56 (1986), p. 945.CrossRefGoogle Scholar
  31. [31]
    D. W. Schaeffer, J. Chem. Phys., 66 (1977), p. 3980.CrossRefGoogle Scholar
  32. [32]
    D. W. Schaefer and B. J. Ackerson, Phys. Rev. Lett., 35 (1975), p. 1448.CrossRefGoogle Scholar
  33. [33]
    D. H. van Winkle and C. A. Murray, (to appear).Google Scholar
  34. [34]
    E. J. W. Verwey and J. Th. G. Overbeek, Theory of Stability of Lyophobic Colloids, Elsevier, Amsterdam, 1948.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • P. M. Chaikin
    • 1
    • 2
  • W. D. Dozier
    • 1
  • H. M. Lindsay
    • 1
  1. 1.Exxon Research and Engineering Co.USA
  2. 2.Department of PhysicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations