Advertisement

Interacting Brownian Particles: A Study of Dyson’s Model

  • Herbert Spohn
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 9)

Abstract

We study the equilibrium fluctuations of Brownian particles in one dimension interacting through the pair force 1/x. In the hydrodynamic limit the structure function is S(k,t) = (|k|/2π)exp[−|t| |k|πρ] with ρ the density of particles and the fluctuation field is Gaussian.

Keywords

Gibbs Measure Dirichlet Form Brownian Particle Fluctuation Field Short Range Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.L. Mehta, Landom Matrices and the Statistical Theory of Energy Levels, Acader,dc Press, New York 1967Google Scholar
  2. [2]
    F.J. Dyson, J.Math.Phys. 3, 1191 (1962)MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    R. Lang, Z. Wahrscheinlichkeitstheorie Verw.Geb. 38, 55 (1977)MATHCrossRefGoogle Scholar
  4. [4]
    H. Spohn, Comm.Math.Phys. 103, 1 (1986)MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    K. Gawedzki, A Kupiainen, Comm.Math.Phys. 92, 531 (1984)MathSciNetCrossRefGoogle Scholar
  6. [6]
    J. Magnen, R. Séneor, preprint, Ecole PolytechniqueGoogle Scholar
  7. [7]
    H. Spohn, to be publishedGoogle Scholar
  8. [8]
    J.-R. Fontaine, Comm.Math.Phys. 91, 419 (1983)MathSciNetCrossRefGoogle Scholar
  9. [9]
    R. Holley and D.W. Stroock, Ann.Math. 110, 333 (1979)MathSciNetCrossRefGoogle Scholar
  10. [10]
    E. Presutti and H. Spohn, Ann.Prob. 11, 867 (1983)MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    O.E. Lanford, Comm.Math.Phys. 11, 257 (1969)MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    A. Lenard, Comm.Math.Phys. 30, 35 (1973)MathSciNetCrossRefGoogle Scholar
  13. [13]
    O. Bratelli and D.W. Robinson, Operator algebras and quantum statistical mechanics, Vol.I and II. Springer, Berlin, 1981Google Scholar
  14. [14]
    E. Lieb and D. Mattis, Mathematical Physics in One Dimension, Academic Press, New York, 1966Google Scholar
  15. [15]
    B. Simon, Trace ideals and their applications, London Mathematical Society Lecture Note Series Vol. 35, Cambridge University Press 1979Google Scholar
  16. [16]
    M. Reed, B. Simon, Methods of modern mathematical physics, Vol. IV Academic Press, New York, 1978Google Scholar
  17. [17]
    E. Witten, Comm.Math.Phys. 92, 455 (1984)MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    P.G. De Gennes, J.Chem.Phys. 48, 2257 (1968)CrossRefGoogle Scholar
  19. [19]
    J. Villain and P. Bak, J.Physique 42, 657 (1981)CrossRefGoogle Scholar
  20. [20]
    T.W. Burkhardt and P. Schlottmann, Z.Physik B54, 151 (1984)Google Scholar
  21. [21]
    J. Bricmont, A. El Mellouki and J. Fröhlich, J.Stat.Phys. 42, 743 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Herbert Spohn
    • 1
  1. 1.Theoretische PhysikUniversität MünchenMünchen 2Germany

Personalised recommendations