Advertisement

Hydrodynamic Screening in Random Media

  • Jacob Rubinstein
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 9)

Abstract

We study the propagation of momentum through viscous fluid in a domain containing a large number of randomly distributed small obstacles. The obstacles are assumed to be fixed, and the velocity is governed by Stokes equations. Our motivations are:
  1. (i)

    Analyse hydrodynamic interactions in random configurations.

     
  2. (ii)

    Develope models for porous media.

     

Keywords

Porous Medium Stokes Equation Singular Perturbation Random Configuration Spectral Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.C. Brinkman, Appl. Sci. Res. Al, 27. (1947).Google Scholar
  2. 2.
    S. Childress, J. Chem. Phys. 36, 2527. (1972)CrossRefGoogle Scholar
  3. 3.
    R. Figari, E. Orlandi and S. Teta, J. Stat. Phys. 41, 465. (1985).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    K.F. Freed and M. Muthukumar, J. Chem. Phys. 68, 2088. (1978).CrossRefGoogle Scholar
  5. 5.
    J. Rappel and H. Brenner, Low Reynolds Number Hydrodynamics, Prentice-Hall (1965).Google Scholar
  6. 6.
    E.J. Hinch, J. Fluid. Mech. 83, 695. (1977).MATHCrossRefGoogle Scholar
  7. 7.
    O.A. Ladyzhenskaya, The Mathematical theory of Viscous Incompressible Flow, Gordon and Breach (1969).Google Scholar
  8. 8.
    J.L. Lions, Perturbations Singuliéres dans les Problémes aux Limites et en Controle Optimal. Lecture Notes in Mathematics Vol. 323, Springer-Verlag (1973).Google Scholar
  9. 9.
    S. Ozawa, Comm. Math. Phys. 91, 473 (1983).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    S. Ozawa, Comm. Math. Phys. 94, 421 (1984).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    G.C. Papanicolaou, in: Les Méthods de L’homogénéisation: Theorie et Application en Physics, INRIA (1985)Google Scholar
  12. 12.
    J. Rubinstein, J. Stat. Phys. 44, 849. (1986)MATHCrossRefGoogle Scholar
  13. 13.
    J. Rubinstein, J. Fluid Mech. 170, 379. (1986)MATHCrossRefGoogle Scholar
  14. 14.
    E. Sanchez-Palencia, Int. J. Eng. Sci. 20, 1291. (1982).MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    C.K.W. Tam, J. Fluid Mech. 38, 537. (1969).MATHCrossRefGoogle Scholar
  16. 16.
    R. Temam, Navier Stokes Equations. North Holland (1977).MATHGoogle Scholar
  17. 17.
    R.A. Adams, Sobolev Spaces, Academic Press (1975).MATHGoogle Scholar
  18. 18.
    D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag (1983).MATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Jacob Rubinstein
    • 1
    • 2
  1. 1.Institute for Mathematics and its ApplicationsUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations