Mathematical Study of Spectra in Random Media

  • Shin Ozawa
Part of the The IMA Volumes in Mathematics and Its Applications book series (IMA, volume 9)


The Lenz shift phenomena concerning eigenvalues of the Laplacian in random media was studied by various authors by various methods. In this note we give an expository introduction to this research area.


Green Function Grained Boundary Random Medium Dirichlet Condition Heuristic Argument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Anne.: Probleme de la glace pilee. Séminaire de Théorie spectrale et Géométrie. Chambery-Grenoble 1984–1985.Google Scholar
  2. [2]
    I. Chavel, E.A. Feldman.: The Riemannian Wiener sausage. preprint.Google Scholar
  3. [3]
    R. Figari, E. Orlandi, S. Teta.: The Laplacian in regions with many obstacles. Fluctuations around the limit operator. J. Stat. Physics. 41, (1985), 465–487.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    E. Ja. Huruslov, V.A. Marchenko.: Boundary value problems in regions with fine grained boundaries. (in Russian) Kiev 1974.Google Scholar
  5. [5]
    M. Kac.: Probabilistic methods in some problems of scattering theory. Rocky Mountain J. Math. 4 (1974), 511–538.MATHGoogle Scholar
  6. [6]
    R. Lang, X. Nguyen-Xuan.: Smoluchowski’s theory of coagulation in colloids holds rigorously in the Boltzmann-Grad limit. Colloquia Mathematica Societatis Jénos Bolyai. 27. Random Fields, Esztergom (Hungary ) 1979.Google Scholar
  7. [7]
    S. Ozawa.: Singular variation of domains and eigenvalues of the Laplacian. Duke Math. J., 48, (1981), 767–778.MATHGoogle Scholar
  8. [8]
    S. Ozawa.: Electrostatic capacity and eigenvalues of the Laplacian. J. J. Fac. Sci. Univ. Tokyo Sec.IA, 30, (1983), 53–62., announcement, Proc. Japan Acad. 58, (1982), 134–136.MATHGoogle Scholar
  9. [9]
    S. Ozawa.: On an elaboration of M. Kac’s theorem concerning eigenvalues of the Laplacian in a region with randomly distributed small obstacles. Commun. Phys. 94, (1983), 473–487.CrossRefGoogle Scholar
  10. [10]
    S. Ozawa.: Fluctuation of spectra in random media. to appear in Proc. Probabilistic Methods in Math. Phys. held at Katata, Japan.Google Scholar
  11. [11]
    S. Ozawa.: Random media and eigenvalues of the Laplacian. Commun. Math. Phys. 94, (1984), 421–437.MATHCrossRefGoogle Scholar
  12. [12]
    S. Ozawa.: Spectral properties of random media. Proc. Japan Acad. 60A, (1984), 343–344.MATHCrossRefGoogle Scholar
  13. [13]
    S. Ozawa.: Spectra of domains with small spherical Neumann boundary. J. Fac. Sci. Univ. Tokyo. Sec. IA, 30, (1983), 53–62., announcement, Proc. Japan Acad. 58, (1982), 134–136.Google Scholar
  14. [14]
    S. Ozawa.: Approximation of Green’s function in a region with many obstacles. in preparation 1986.Google Scholar
  15. [15]
    G. C. Papanicolaou, S. R. S. Varadhan.: Diffusion in region with many small holes. Lect. Notes in Control and Information. vol 75, Springer (1980).Google Scholar
  16. [16]
    J. Rauch, M. Taylor.: Potential and scattering theory on wildly perturbed domains. J. Funct. Anal., 18, (1975), 27–59.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    J. Rubinstein.: On the macroscopic description of slow viscous flow past a random array of spheres. preprint.Google Scholar
  18. [18]
    which may be given by someoneGoogle Scholar
  19. [19]
    J. M. Zaiman.: Models of Disorder. Cambridge Univ. Press. 1979.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Shin Ozawa
    • 1
  1. 1.Department of MathematicsOsaka UniversityToyonaka, Osaka 560Japan

Personalised recommendations