Singly and Doubly Censored Current Status Data with Extensions to Multi-State Counting Processes

  • Nicholas P. Jewell
  • Mark van der Laan
Part of the Lecture Notes in Statistics book series (LNS, volume 123)


In estimation of a survival function, current status data arises when the only information available on sampled individuals is their survival status at a single monitoring time. Here, we briefly review recent developments in nonparametric estimation techniques for two extensions of current status data, namely (i) doubly censored current status data, where there is incomplete information on the origin of the failure time random variable, and (ii) current status information on more complicated stochastic processes.


Renewal Process Counting Process Monitoring Time Nonparametric Maximum Likelihood Current Status Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayer, M, Brunk, H. D., Ewing, G. M., Reid, W. T., and Silverman, E. (1955). An empirical distribution function for sampling with incomplete information. The Annals of Statistics, 26, 641–647.MathSciNetMATHCrossRefGoogle Scholar
  2. Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Brunk, H. D. (1972). Statistical Inference Under Order Restrictions. New York: Wiley.MATHGoogle Scholar
  3. Bickel, P. J., Klaassen, A. J., Ritov, Y., and Wellner, J. A. (1993). Efficient and Adaptive Inference in Semi-Parametric Models. Baltimore: Johns Hopkins University Press.Google Scholar
  4. DeGruttola, V., and Lagakos, S. W. (1989). Analysis of doubly-censored survival data, with application to AIDS. Biometrics, 45, 1–11.MathSciNetMATHCrossRefGoogle Scholar
  5. Diamond, I. D., and McDonald, J. W. (1991). The analysis of current status data. In Demographic Applications of Event History Analysis, Eds. J. Trussell, R. Hankinson and J. Tilton. Oxford: Oxford University Press.Google Scholar
  6. Diamond, I. D., McDonald, J. W., and Shah, I. H. (1986). Proportional hazards models for current status data: application to the study of differentials in age at weaning in Pakistan. Demography, 23, 607–620.CrossRefGoogle Scholar
  7. Dinse, G. E., and Lagakos, S. W. (1982). Nonparametric estimation of lifetime and disease onset distributions from incomplete observations. Biometrics, 38, 921–932.MATHCrossRefGoogle Scholar
  8. Groeneboom, P., and Wellner, J. A. (1992). Nonparametric Maximum Likelihood Estimators for Interval Censoring and Deconvolution. Boston: Birkhaüser-Boston.CrossRefGoogle Scholar
  9. Huang, J. (1994). Estimation in Regression Models with Interval Censoring. Ph.D. Thesis, University of Washington.Google Scholar
  10. Jewell, N. P., Malani, H.M., and Vittinghoff, E. (1994). Nonparametric estimation for a form of doubly censored data with application to two problems in AIDS. Journal of the American Statistical Association, 89, 7–18.MATHCrossRefGoogle Scholar
  11. Jewell, N. P., and Shiboski, S. C. (1990). Statistical analysis of HIV in-fectivity based on partner studies. Biometrics, 46, 1133–1150.CrossRefGoogle Scholar
  12. Jewell, N. P., and Shiboski, S. C. (1993). The design and analysis of partner studies of HIV transmission. In Methodological Issues in AIDS Behavioral Research, Eds. D. G. Ostrow and R. Kessler. New York: Plenum Publishing Company.Google Scholar
  13. Jewell, N. P., and van der Laan, M. (1995). Generalizations of current status data with applications. Lifetime Data Analysis, 1, 101–109.MATHCrossRefGoogle Scholar
  14. Keiding, N. (1991). Age-specific incidence and prevalence (with discussion). Journal of the Royal Statistical Society, Series A, 154, 371–412.MathSciNetMATHCrossRefGoogle Scholar
  15. Klein, R. W., and Spadey, R. H. (1993). An efficient semiparametric estimator for binary response models. Econometrica, 61, 387–421.MathSciNetMATHCrossRefGoogle Scholar
  16. van der Laan, M., Bickel, P., and Jewell, N. P. (1996). Singly and doubly censored current status data: estimation, asymptotics and regression. Submitted for publication.Google Scholar
  17. van der Laan, M., and Hubbard, A. (1996). Estimation with interval censored data and covariates. Submitted for publication.Google Scholar
  18. van der Laan, M., Jewell, N. P., and Peterson, D. (1996). Efficient estimation of the lifetime and disease onset distributions. Submitted for publication.Google Scholar
  19. van der Laan, M., and Jewell, N. P. (1996). Current status data for renewal processes and general multi-State counting processes. Submitted for publication.Google Scholar
  20. Rabinowitz, D., and Jewell, N. P. (1996). Regression with doubly censored current status data. Journal of the Royal Statistical Society, Series B, to appear.Google Scholar
  21. Rabinowitz, D., Tsiatis, A and Aragon, J. (1995). Regression with interval censored data. Biometrika, 82, 501–513.MathSciNetMATHCrossRefGoogle Scholar
  22. Shiboski, S. C., and Jewell, N. P. (1992). Statistical analysis of the time dependence of HIV infectivity based on partner study data. Journal of the American Statistical Association, 87, 360–372.CrossRefGoogle Scholar
  23. Vittinghoff, E., Malani, H.M., and Jewell, N. P. (1994). Estimating patterns of CD4 lymphocyte decline using data from a prevalent cohort of HIV infected individuals. Statistics in Medicine, 13, 1101–1118.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • Nicholas P. Jewell
  • Mark van der Laan

There are no affiliations available

Personalised recommendations