Extending the Cox Model

  • Terry M. Therneau
Part of the Lecture Notes in Statistics book series (LNS, volume 123)


Since its introduction, the proportional hazards model proposed by Cox has become the workhorse of regression analysis for censored data. In the last several years, the theoretical basis for the model has been solidified by connecting it to the study of counting processes and martingale theory. These developments have, in turn, led to the introduction of several new extensions to the original model. These include the analysis of residuals, time dependent coefficients, multiple/correlated observations, multiple time scales and time dependent strata.

These new techniques have not, however, been easily available to the practictioner, having as of yet not appeared as options in the usual statistical packages. The aim of this monograph is to show how many of these techniques can be approached using standard statistical software, in particular the S-Plus and SAS packages. As such, it should be a bridge between the statistical journals and actual practice.


Primary Biliary Cirrhosis Counting Process Time Dependent Covariates Death Time Karnofsky Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Andersen, P.K. and Gill, R.D. (1982). Cox’s regression model for counting processes: A large sample study. Ann. Stat. 10, 1100–20.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Andersen, P.K., Borgan, O., Gill, R.D., and Keiding, N. (1992) Statistical Models Based on Counting Processes. Springer-Verlag, New York.Google Scholar
  3. [3]
    Barlow, W.E. and Prentice, R.L. (1988). Residuals for relative risk regression. Biometrika 75, 65–74.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Barlow, W.E. (1994). Robust variance estimation for the case-cohort design. Biometrics 50, 1064–1072.MATHCrossRefGoogle Scholar
  5. [5]
    Cain, K.C. and Lange, N.T. (1984). Approximate case influence for the proportional hazards regression model with censored data. Biometrics 40, 493–99.CrossRefGoogle Scholar
  6. [6]
    Chappell, R. (1992). A note on linear rank tests and Gill and Schumacher’s tests of proportionality. Biometrika 79, 199–201.CrossRefGoogle Scholar
  7. [7]
    Chen, C.H. and Wang, P.C. (1991). Diagnostic plots in Cox’s regression model. Biometrics 47, 841–50.MATHCrossRefGoogle Scholar
  8. [8]
    Cox, D.R. (1972). Regression models and life tables (with discussion). J. Royal Stat. Soc. B 34, 187–220.MATHGoogle Scholar
  9. [9]
    Chambers, J.M., Cleveland, W.S., Kleiner, B. and Tukey, P.A. (1983). Graphical Methods for Data Analysis. Wadsworth, Belmont.MATHGoogle Scholar
  10. [10]
    Crowley, J. and Hu, M. (1977). Covariance analysis of heart transplant survival data. J. Am. Stat. Assoc, 72, 27–36.CrossRefGoogle Scholar
  11. [11]
    Dickson, E.R., Grambsch, P.M., Fleming, T.R, Fisher, L.D. and Langworthy, A. (1989). Prognosis in primary biliary cirrhosis: Model for decision making. Hepatology 10, 1–7.CrossRefGoogle Scholar
  12. [12]
    Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans, SIAM, Philadelphia.CrossRefGoogle Scholar
  13. [13]
    Fleming, T.R. and Harrington, D.P. (1991), Counting Processes and Survival Analysis, Wiley, New York.MATHGoogle Scholar
  14. [14]
    Gill, R. and Schumacher, M. (1987). A simple test of the proportional hazards assumption. Biometrika 74, 289–300.MATHCrossRefGoogle Scholar
  15. [15]
    Grambsch, P.M. and Therneau, T.M. (1994). Proportional hazards tests and diagnostics based on weighted residuals. Biometrika, 81, 515–26.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Grambsch, P., Therneau, T.M., and Fleming T.R. (1995). Diagnostic plots to reveal functional form for covariates in multiplicative intensity models. Biometrics 51, 1469–1482.MATHCrossRefGoogle Scholar
  17. [17]
    Harrell, F. (1986). The PHGLM procedure. SAS Supplemental Library User’s Guide Version 5. Cary, NC: SAS Institute Inc.Google Scholar
  18. [18]
    Harrell, F.E., Pollock, B. G. and Lee, K. L. (1987). Graphical methods for the analysis of survival data. In Proceedings of the Twelfth Annual SAS Users Group International Conference, p 1107–1115. SAS Institute, Inc., Cary, NC.Google Scholar
  19. [19]
    Hastie, T.J. and Tibshirani, R.J. (1990). Generalized Additive Models. Chapman and Hall, London.MATHGoogle Scholar
  20. [20]
    Huber, P.J. (1967). The behavior of maximum likelihood estimates under non-standard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 1, 221–33.Google Scholar
  21. [21]
    Kalbfleisch, J.D. and Prentice R.L. (1980). The Statistical Analysis of Failure Time Data, Wiley, New York.MATHGoogle Scholar
  22. [22]
    Laird, N.M. and Olivier, D. (1981). Covariance analysis of censored survival data using log-linear analysis techniques. J. Am. Stat. Assoc. 76, 231–40.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    Lee, E.W., Wei, L.J. and Amato D. (1992). Cox-type regression analysis for large number of small groups of correlated failure time observations. In Klein, J.P and Goel, P.K. (eds), Survival Analysis, State of the Art, 237–247, Kluwer Academic Publishers, Netherlands.Google Scholar
  24. [24]
    Liang, K.Y. and Zeger, S.L. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42, 121–30.CrossRefGoogle Scholar
  25. [25]
    Lindor, K.D., Dickson, E.R., Baldus, W.P., Jorgensen, R.A., Ludwig, J., Murtaugh, P.A., Harrison, J.M., Wiesner, R.H., Anderson, M.L., Lange, S.M., LeSage, G., Rossi, S.S and Hofman, A.F. (1994). Ursodeoxycholic acid in the treatment of primary biliary cirrhosis. Gastroenterology 106, 1284–90.Google Scholar
  26. [26]
    Lipsitz, S.R., Laird, N.M. and Harrington, D.P. (1990) Using the jackknife to estimate the variance of regression estimators from repeated measures studies. Comm Stat Theory Meth. 19, 821–45.CrossRefGoogle Scholar
  27. [27]
    Lin, D.Y. (1991). Goodness-of-fit analysis for the Cox regression model based on a class of parameter estimators. J. Am. Stat. Assoc. 86, 725–728.MATHCrossRefGoogle Scholar
  28. [28]
    Lin, D.Y. and Wei, L.J. (1989). The robust inference for the Cox proportional hazards model. J. Am. Stat. Assoc. 84, 1074–78.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    Lin, D.Y. and Wei, L.J. (1991). Goodness-of-fit tests for the general Cox regression model. Statistica Sinica 1, 1–17.MathSciNetMATHGoogle Scholar
  30. [30]
    Lin, D.Y., Wei, L.J. and Ying, Z. (1993). Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika 80, 557–72.MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    McCullagh, P. and Neider, J.A. (1983). Generalized Linear Models. Chapman and Hall.Google Scholar
  32. [32]
    Miller, R.G. (1981), Survival Analysis, Wiley, New York.MATHGoogle Scholar
  33. [33]
    Moreau, T., O’Quigley, J. and Mesbah, M. (1985). A global goodness-of-fit statistic for the proportional hazards model. Applied Statistics 34, 212–218.MathSciNetCrossRefGoogle Scholar
  34. [34]
    Moss, A.J. and the Multicenter Diltiazem Trial Research Group (1988). The effect of diltiazem on mortality and reinfarction after myocardial infarction. New England J. of Medicine, 319, 385–92.CrossRefGoogle Scholar
  35. [35]
    Nagelkerke, N. J. D., Oosting, J., and Hart, A. A. M. (1984). A simple test for goodness of fit of Cox’s proportional hazards model. Biometrics 40, 483–486.CrossRefGoogle Scholar
  36. [36]
    O’Quigley, J. and Pessione, F. (1989). Score tests for homogeneity of regression effects in the proportional hazards model. Biometrics 45, 135–144.MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    Prentice, R.L. and Cai, J. (1992). Covariance and survivor function estimation using censored multivariate failure time data, Biometrika, 79, 495–512.MathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    Reid, N. and Crépeau, H. (1985). Influence functions for proportional hazards regression. Biometrika 72: 1–9.MathSciNetCrossRefGoogle Scholar
  39. [39]
    Schoenfeld, D. (1980). Chi-squared goodness-of-fit tests for the proportional hazards regression model. Biometrika 67, 145–53.MathSciNetMATHCrossRefGoogle Scholar
  40. [40]
    Therneau, T.M., Grambsch P.M. and Fleming, T.R. (1990). Martingale based residuals for survival models. Biometrika 77, 147–60.MathSciNetMATHCrossRefGoogle Scholar
  41. [41]
    Uitti, R.J., Ahlskog, J.E., Maraganore, D.M., Muenter, M.D., Atkinson, E.J., Cha, R.H. and O’Brien, P.C. (1993). Levodopa therapy and survival in idiopathic Parkinson’s disease: Olmsted County Project. Neurology 43, 1918–26.Google Scholar
  42. [42]
    Wei, L.J., Lin, D.Y. and Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J. Am. Stat Assoc. 84, 1065–73.MathSciNetCrossRefGoogle Scholar
  43. [43]
    White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48, 817–38.MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrika 50 1–26.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • Terry M. Therneau

There are no affiliations available

Personalised recommendations