Some Exploratory Tools for Survival Analysis

  • John Crowley
  • Michael LeBlanc
  • Joth Jacobson
  • Sidney E. Salmon
Part of the Lecture Notes in Statistics book series (LNS, volume 123)


Graphical and computer-intensive methods for exploring survival data are becoming more widely available, though perhaps not yet widely used. We review some recent developments in this area, including running quantile plots, local estimation of the relative risk function, and recursive partitioning. The use of Martingale residuals in some of these methods will be contrasted with other approaches. The methods are applied to data on patients with multiple myeloma treated on trials conducted by the Southwest Oncology Group.


Multiple Myeloma Terminal Node American Statistical Association Partial Likelihood Exploratory Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arjas, E. (1988). A graphical method for assessing goodness of fit in Cox’s proportional hazards model. Journal of the American Statistical Association, 83, 204–212.CrossRefGoogle Scholar
  2. Becker, R., Chambers, J. and Wilks, A. (1988). The New S Language. Wadsworth, Pacific Grove, CA.MATHGoogle Scholar
  3. Beran, R. (1981). Nonparametric regression with randomly censored survival data. Technical Report, Department of Statistics, University of California-Berkeley.Google Scholar
  4. Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification and regression trees. Wadsworth, Belmont, CA.MATHGoogle Scholar
  5. Breslow, N. (1974). Covariance analysis of censored survival data. Biometrics, 30, 89–99.CrossRefGoogle Scholar
  6. Ciampi, A., Thiffault, J., Nakache, J.-P. and Asselain, B. (1986). Stratification by stepwise regression, correspondence analysis and recursive partition. Computational Statistics and Data Analysis, 4, 185–204.MATHCrossRefGoogle Scholar
  7. Cox, D. R. and Snell E. J. (1968). A general definition of residuals (with discussion). Journal of the Royal Statistical Society, Series B, 30, 248–275.MathSciNetGoogle Scholar
  8. Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, Series B, 34, 187–220.MATHGoogle Scholar
  9. Cox, D. R. (1975). Partial likelihood. Biometrika, 62, 269–276.MathSciNetMATHCrossRefGoogle Scholar
  10. Crowley, J. and Hu, M. (1977). Covariance analysis of heart transplant survival data. Journal of the American Statistical Association, 72, 27–36.CrossRefGoogle Scholar
  11. Crowley, J., LeBlanc, M., Gentleman, R. and Salmon, S. (1995). Exploratory methods in survival analysis. In Analysis of Censored Data, IMS Lecture Notes — Monograph Series 27, H. L. Koul and J. V. Deshpande, Eds, 55–77, Institute of Mathematical Statistics, Hayward, CA.CrossRefGoogle Scholar
  12. Crowley, J and Storer, B. E. (1983) Comment on Aitkin, M., Laird, N. and Francis, B. A reanalysis of the Stanford heart transplant data. Journal of the American Statistical Association, 78, 277–281.CrossRefGoogle Scholar
  13. Davis, R. and Anderson, J. (1989). Exponential survival trees. Statistics in Medicine, 8, 947–962.CrossRefGoogle Scholar
  14. Doksum, K. A. and Yandell, B. S. (1983). Properties of regression estimates based on censored survival data. In Festschrift for Erich L. Lehmann, P. J. Bickel, K. A. Doksum and J. L. Hodges, Eds, 140–156, Wadsworth, Belmont, CA.Google Scholar
  15. Durie, B. G. M. and Salmon, S. E. (1975). A clinical system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment and survival. Cancer, 36, 842–854.CrossRefGoogle Scholar
  16. Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman and Hall, New York.MATHGoogle Scholar
  17. Fleming, T. R. and Harrington, D. P. (1991) Counting Processes and Survival Analysis. John Wiley and Sons, New York.MATHGoogle Scholar
  18. Gentleman, R. and Crowley, J. (1991a). Graphical methods for censored data. Journal of the American Statistical Association, 86, 678–683.CrossRefGoogle Scholar
  19. Gentleman, R. and Crowley, J. (1991b). Local full likelihood estimation for the proportional hazards model. Biometrics, 47, 1283–1296.MathSciNetCrossRefGoogle Scholar
  20. Gordon, L. and Olshen, R. A. (1985). Tree-structured survival analysis. Cancer Treatment Reports, 69, 1065–1069.Google Scholar
  21. Harrington, D. and Fleming, T. (1982). A class of rank test procedures for censored survival data. Biometrika, 69, 553–556.MathSciNetMATHCrossRefGoogle Scholar
  22. Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data. John Wiley and Sons, New York.MATHGoogle Scholar
  23. Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457–481.MathSciNetMATHCrossRefGoogle Scholar
  24. Kay, R. (1977). Proportional hazard regression models and the analysis of censored survival data. Applied Statistics, 26, 227–237.CrossRefGoogle Scholar
  25. Lagakos, S. W. (1981). The graphical evaluation of explanatory variables in proportional hazards regression models. Biometrika, 40, 1037–1048.Google Scholar
  26. LeBlanc, M. and Crowley, J. (1993). Survival trees by goodness of split. Journal of the American Statistical Association, 88, 457–467.MathSciNetMATHCrossRefGoogle Scholar
  27. LeBlanc, M. and Crowley, J. (1995). Step-function covariate effects in the proportional-hazards model. The Canadian Journal of Statistics, 23, 109–129.MathSciNetMATHCrossRefGoogle Scholar
  28. Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemotherapy Reports, 50, 163–170.Google Scholar
  29. Salmon, S. E., Tesh, D., Crowley, J., Saeed, S., Finley, P., Milder, M. S., Hutchins, L. F., Coltman, C. A. Jr., Bonnet, J. D., Cheson, B., Knost, J. A., Samhouri, A., Beckord, J. and Stock-Novack, D. (1990). Chemotherapy is superior to sequential hemibody irradiation for remission consolidation in multiple myeloma: A Southwest Oncology Group Study. Journal of Clinical Oncology, 8, 1575–1584.Google Scholar
  30. Salmon, S. E., Crowley, J., Grogan, T. M., Finley, P., Pugh, R. P. and Barlogie, B. (1994). Combination chemotherapy glucocorticoids, and interferon alpha in the treatment of multiple myeloma: A Southwest Oncology Group study. Journal of Clinical Oncology, 12, 2405–2414.Google Scholar
  31. Segal, M. R. (1988). Regression trees for censored data. Biometrics, 44, 35–48.MATHCrossRefGoogle Scholar
  32. Therneau, T., Grambsch, P. and Fleming, T. (1990). Martingale-based residuals for survival models. Biometrika, 77, 147–160.MathSciNetMATHCrossRefGoogle Scholar
  33. Tibshirani, R. J. and Hastie, T. (1987). Local likelihood estimation. Journal of the American Statistical Association, 82, 559–567.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • John Crowley
  • Michael LeBlanc
  • Joth Jacobson
  • Sidney E. Salmon

There are no affiliations available

Personalised recommendations